期刊论文详细信息
BMC Genetics
Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human and dromedary camel probes
Alexander S Graphodatsky1  Melody E Roelke-Parker4  Mary Thompson2  Trung T Nguyen5  Darya A Grafodatskaya3  Polina L Perelman4  Anastasia I Kulemzina1 
[1] Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia;BSP-CCR Genetics Core, Center for Cancer Research, 21702 Frederick, MD, USA;Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada;Laboratory of Genomic Diversity, National Cancer Institute, 21702 Frederick, MD, USA;Institute of Animal Sciences, Swiss Federal Institute of Technology, (ETH), 8092 Zurich, Switzerland
关键词: Chromosome evolution;    Phylogeny;    Pecora;    Comparative cytogenetics;    Pseudoryx nghetinhensis;    Saola;    Antilocapra americana;    Pronghorn;   
Others  :  866464
DOI  :  10.1186/1471-2156-15-68
 received in 2014-02-26, accepted in 2014-06-09,  发布年份 2014
【 摘 要 】

Background

Pronghorn (Antilocapridae, 2n = 58) and saola (Bovidae, 2n = 50) are members of Pecora, a highly diversified group of even-toed hoofed mammals. Karyotypes of these species were not involved in chromosome painting studies despite their intriguing phylogenetic positions in Pecora.

Results

To trace the chromosome evolution during very fast radiation of main families from the common Pecoran ancestor, high-resolution comparative chromosome maps of pronghorn and saola with human (HSA) and dromedary camel (CDR) painting probes were established. The human and dromedary camel painting probes revealed 50 and 64 conserved segments respectively in the pronghorn genome, while 51 and 63 conserved segments respectively in the saola genome. Integrative analysis with published comparative maps showed that inversions in chromosomes homologous to CDR19/35/19 (HSA 10/20/10), CDR12/34/12 (HSA12/22/12/22), CDR10/33/10 (HSA 11) are present in representatives of all five living Pecoran families. The pronghorn karyotype could have formed from a putative 2n = 58 Pecoran ancestral karyotype by one fission and one fusion and that the saola karyotype differs from the presumed 2n = 60 bovid ancestral karyotype (2n = 60) by five fusions.

Conclusion

The establishment of high-resolution comparative maps for pronghorn and saola has shed some new insights into the putative ancestral karyotype, chromosomal evolution and phylogenic relationships in Pecora. No cytogenetic signature rearrangements were found that could unite the Antilocapridae with Giraffidae or with any other Pecoran families. Our data on the saola support a separate position of Pseudorigyna subtribe rather than its affinity to either Bovina or Bubalina, but the saola phylogenetic position within Bovidae remains unresolved.

【 授权许可】

   
2014 Kulemzina et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 6 . 53KB Image download
101KB Image download
96KB Image download
68KB Image download
82KB Image download
56KB Image download
【 图 表 】

Figure 6 .

【 参考文献 】
  • [1]Janis CM, Manning E: Antilocapridae. In Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulate like Mammals. Edited by Janis CM, Scott KM, Jacobs LL. Cambridge: Cambridge University Press; 1998:491-507.
  • [2]Yoakum J: Habitat Management Guides for the American Pronghorn Antelope. Technical note. Nevada: US Department of the Interior-Bureau of Land Management; 1980.
  • [3]Hassanin A, Douzery EJP: Molecular and morphological phylogenies of ruminantia and the alternative position of the moschidae. Syst Biol 2003, 52(2):206-228.
  • [4]Beintema JJ, Breukelman HJ, Dubois JYF, Warmels HW: Phylogeny of ruminants secretory ribonuclease gene sequences of pronghorn (Antilocapra americana). Mol Phylogenet Evol 2003, 26:18-25.
  • [5]Fernandez MH, Vrba ES: A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Bio Rev 2005, 80:269-302.
  • [6]Montgelard C, Catzeflis FM, Douzery E: Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol 1997, 14(5):550-559.
  • [7]Matthee CA, Burzlaff JD, Taylor JF, Davis SK: Mining the mammalian genome for artiodactyl systematics. Syst Biol 2001, 50:367-390.
  • [8]Agnarsson I, May-Collado LJ: The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol 2008, 48(3):964-985.
  • [9]Decker JE, Pires C, Conant GC, McKay SD, Heaton MP, Vilkki J, Seabury CM, Caetano AR, Johnson GS, Brenneman RA, Hanotte O, Eggert LS, Wiener P, Kim JJ, Kim KS, Sonstegard TS, Van Tassell CP, Neibergs HL, Chen K, Cooper A, McEwan JC, Brauning R, Coutinho LL, Babar ME, Wilson GA, McLure MC, Rolf MM, Kim JW, Schnabel RD, Taylor JF: Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc Natl Acad Sci U S A 2009, 106(44):18644-18649.
  • [10]Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen Van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A: Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 2012, 335(1):32-50.
  • [11]Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever JE, Galloway SM, Tate ML: A deer (Subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 2002, 160:1587-1597.
  • [12]Cernohorska H, Kubickova S, Kopecna O, Kulemzina AI, Perelman PL, Elder FF, Robinson TJ, Graphodatsky AS, Rubes J: Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana). Chromosome Res 2013, 21(5):447-460.
  • [13]Dung VV, Giao PM, Chinh NN, Tuoc D, Arctander P, MacKinnon J: A new species of living bovid from Vietnam. Nature 1993, 363:443-445.
  • [14]Hassanin A, Douzery EJ: Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proc Biol Sci 1999, 266(1422):893-900.
  • [15]Gatesy J, Arctander P: Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst Biol 2000, 49(3):515-538.
  • [16]Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen BX, Hassanin A, Volobouev VT: Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res 2008, 122(1):41-54.
  • [17]Hassanin A, An J, Ropiquet A, Nguyen TT, Couloux A: Combining multiple autosomal introns for studying shallow phylogeny and taxonomy of Laurasiatherian mammals: Application to the tribe Bovini (Cetartiodactyla, Bovidae). Mol Phylogenet Evol 2013, 66(3):766-775.
  • [18]Ahrens E, Graphodatskaya D, Nguyen BX, Stranzinger G: Cytogenetic comparison of saola (Pseudoryx nghetinhensis) and cattle (Bos taurus) using G- and Q-banding and FISH. Cytogenet Genome Res 2005, 111:147-151.
  • [19]Nguyen TT, Nguyen BX, Stranzinger G: Characterization of G-banded chromosomes of a female saola (Pseudoryx nghetinhensis, 2n = 50) and X chromosome identification by means of fluorescent in situ hybridization. Cytogenet Genome Res 2005, 109:502-506.
  • [20]Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 1972, 75:304-306.
  • [21]Center for Reproduction of Endangered Species (CRES), Zoological Society of San Diego: Antilocapra americana (pronghorn). In Atlas of Mammalian Chromosomes. Edited by O’Brien SJ, Menninger JC, Nash WG. New York: John Wiley and Sons; 2006:595.
  • [22]Yang F, O’Brien PC, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, Rens W, Sargan D, Ferguson Smith MA: A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 1999, 62:189-202.
  • [23]Balmus G, Trifonov VA, Biltueva LS, O’Brien PCM, Alkalaeva ES, Fu B, Skidmore JA, Allen T, Graphodatsky AS, Yang F, Ferguson-Smith MA: Cross species painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 2007, 15:499-514.
  • [24]Yang F, Graphodatsky AS: Chapter 29. Animal Probes and ZOO-FISH. In Fluorescence In Situ Hybridization (FISH) – Application Guide. Edited by Liehr T. Berlin: Springer-Verlag Heidelberg; 2009:323-346.
  • [25]Seabright M: A rapid banding technique for human chromosomes. Lancet 1971, 2:971-972.
  • [26]Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, Stanyon R, Yang F, Graphodatsky AS: Cross − species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res 2009, 17:419-436.
  • [27]Kulemzina AI, Yang F, Trifonov VA, Ryder OA, Ferguson-Smith MA, Graphodatsky AS: Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype. Chromosome Res 2011, 19(4):531-539.
  • [28]Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS: Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res 2010, 128(4):228-235.
  • [29]Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F: Karyotypic evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Cytogenet Genome Res 2008, 122:132-138.
  • [30]Price SA, Bininda-Emonds ORP, Gittleman JL: A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 2005, 80:445-473.
  • [31]Huang L, Nie W, Wang J, Su W, Yang F: Phylogenomic study of the subfamily Caprinae by cross-species chromosome painting with Chinese muntjac paints. Chromosome Res 2005, 13:389-399.
  • [32]Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F: New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 2005, 108:310-316.
  文献评价指标  
  下载次数:32次 浏览次数:15次