期刊论文详细信息
BMC Evolutionary Biology
Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data
James J Valdés1  Jan Kopecký1  Alejandro Cabezas-Cruz1  Alexandra Schwarz1 
[1] Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005 České Budějovice Czech Republic
关键词: Evolution;    Molecular clock;    Protein disorder;    Antigenicity;    Structural bioinformatics;    Cysteine motif;    Kunitz-domain proteins;    Tick saliva;    Red Queen hypothesis;   
Others  :  858137
DOI  :  10.1186/1471-2148-14-4
 received in 2013-06-17, accepted in 2013-12-13,  发布年份 2014
PDF
【 摘 要 】

Background

Ticks are blood-sucking arthropods and a primary function of tick salivary proteins is to counteract the host’s immune response. Tick salivary Kunitz-domain proteins perform multiple functions within the feeding lesion and have been classified as venoms; thereby, constituting them as one of the important elements in the arms race with the host. The two main mechanisms advocated to explain the functional heterogeneity of tick salivary Kunitz-domain proteins are gene sharing and gene duplication. Both do not, however, elucidate the evolution of the Kunitz family in ticks from a structural dynamic point of view. The Red Queen hypothesis offers a fruitful theoretical framework to give a dynamic explanation for host-parasite interactions. Using the recent salivary gland Ixodes ricinus transcriptome we analyze, for the first time, single Kunitz-domain encoding transcripts by means of computational, structural bioinformatics and phylogenetic approaches to improve our understanding of the structural evolution of this important multigenic protein family.

Results

Organizing the I. ricinus single Kunitz-domain peptides based on their cysteine motif allowed us to specify a putative target and to relate this target specificity to Illumina transcript reads during tick feeding. We observe that several of these Kunitz peptide groups vary in their translated amino acid sequence, secondary structure, antigenicity, and intrinsic disorder, and that the majority of these groups are subject to a purifying (negative) selection. We finalize by describing the evolution and emergence of these Kunitz peptides. The overall interpretation of our analyses discloses a rapidly emerging Kunitz group with a distinct disulfide bond pattern from the I. ricinus salivary gland transcriptome.

Conclusions

We propose a model to explain the structural and functional evolution of tick salivary Kunitz peptides that we call target-oriented evolution. Our study reveals that combining analytical approaches (transcriptomes, computational, bioinformatics and phylogenetics) improves our understanding of the biological functions of important salivary gland mediators during tick feeding.

【 授权许可】

   
2014 Schwarz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723093701950.pdf 3350KB PDF download
66KB Image download
87KB Image download
46KB Image download
51KB Image download
41KB Image download
53KB Image download
204KB Image download
【 图 表 】

【 参考文献 】
  • [1]Spielman A, Mehlhorn H, Voigt WP, Armstrong PM: Ticks. 2nd edition. Berlin: Springer; 2001.
  • [2]Dantas-Torres F, Chomel BB, Otranto D: Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 2012, 28(10):437-446.
  • [3]Chmelar J, Oliveira CJ, Rezacova P, Francischetti IMB, Kovarova Z, Pejler G, Kopacek P, Ribeiro JMC, Mares M, Kopecky J, et al.: A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 2010, 117(2):736-744.
  • [4]Francischetti IMB, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM: The role of saliva in tick feeding. Front Biosci 2009, 14:2051-2088.
  • [5]Wong ESW, Belov K: Venom evolution through gene duplications. Gene 2012, 496(1):1-7.
  • [6]Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM: Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 2002, 205(Pt 18):2843-2864.
  • [7]Ribeiro JM, Francischetti IM: Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 2003, 48:73-88.
  • [8]Francischetti IM, My Pham V, Mans BJ, Andersen JF, Mather TN, Lane RS, Ribeiro JM: The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem Mol Biol 2005, 35(10):1142-1161.
  • [9]Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK: An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 2006, 36(2):111-129.
  • [10]Alarcon-Chaidez FJ, Sun J, Wikel SK: Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol 2007, 37(1):48-71.
  • [11]Anatriello E, Ribeiro J, de Miranda-Santos I, Brandao L, Anderson J, Valenzuela J, Maruyama S, Silva J, Ferreira B: An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics 2010, 11(1):450. BioMed Central Full Text
  • [12]Karim S, Singh P, Ribeiro JMC: A Deep Insight into the Sialotranscriptome of the Gulf Coast Tick. Amblyomma maculatum. PLoS ONE 2011, 6(12):e28525.
  • [13]Ribeiro J, Anderson J, Manoukis N, Meng Z, Francischetti I: A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics 2011, 12(1):136. BioMed Central Full Text
  • [14]Batista IFC, Chudzinski-Tavassi AM, Faria F, Simons SM, Barros-Batestti DM, Labruna MB, Leão LI, Ho PL, Junqueira-de-Azevedo ILM: Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae). Toxicon 2008, 51(5):823-834.
  • [15]Aljamali MN, Ramakrishnan VG, Weng H, Tucker JS, Sauer JR, Essenberg RC: Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L). Arch Insect Biochem Physiol 2009, 71(4):236-253.
  • [16]Francischetti IMB, Anderson JM, Manoukis N, Pham VM, Ribeiro JMC: An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteomics 2011, 74(12):2892-2908.
  • [17]Chmelar J, Anderson J, Mu J, Jochim R, Valenzuela J, Kopecky J: Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics 2008, 9(1):233. BioMed Central Full Text
  • [18]Schwarz A, von Reumont BM, Erhart J, Chagas AC, Ribeiro JMC, Kotsyfakis M: De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J 2013, 27(12):4745-4756.
  • [19]Mans BJ, Andersen JF, Francischetti IMB, Valenzuela JG, Schwan TG, Pham VM, Garfield MK, Hammer CH, Ribeiro JMC: Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol 2008, 38(1):42-58.
  • [20]Ribeiro JMC, Labruna MB, Mans BJ, Maruyama SR, Francischetti IMB, Barizon GC, de Miranda Santos IKF: The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food. Insect Biochem Mol Biol 2012, 42(5):332-342.
  • [21]Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC: An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J Proteomics 2008, 71(5):493-512.
  • [22]Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, Pham VM, Ribeiro JMC: An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochem Mol Biol 2008, 38(1):1-21.
  • [23]Dai S-X, Zhang A-D, Huang J-F: Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes scapularis. BMC Evol Biol 2012, 12(1):4. BioMed Central Full Text
  • [24]Kunitz M, Northrop JH: Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J Gen Physiol 1936, 19(6):991-1007.
  • [25]Lima CA, Torquato RJS, Sasaki SD, Justo GZ, Tanaka AS: Biochemical characterization of a Kunitz type inhibitor similar to dendrotoxins produced by Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) hemocytes. Vet Parasitol 2010, 167(2ÄÄì4):279-287.
  • [26]Paesen GC, Siebold C, Harlos K, Peacey MF, Nuttall PA, Stuart DI: A tick protein with a modified kunitz fold inhibits human tryptase. J Mol Biol 2007, 368(4):1172-1186.
  • [27]Gao X, Shi L, Zhou Y, Cao J, Zhang H, Zhou J: Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. J Insect Physiol 2011, 57(2):339-343.
  • [28]Alim MA, Islam MK, Anisuzzaman , Miyoshi T, Hatta T, Yamaji K, Matsubayashi M, Fujisaki K, Tsuji N: A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. Insect Biochem Mol Biol 2012, 42(12):925-934.
  • [29]Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Yamaji K, Anisuzzaman , Fujisaki K: A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Mol Biochem Parasitol 2010, 170(2):112-115.
  • [30]Islam MK, Tsuji N, Miyoshi T, Alim MA, Huang X, Hatta T, Fujisaki K: The kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog 2009, 5(7):e1000497.
  • [31]Batista IFC, Ramos OHP, Ventura JS, Junqueira-de-Azevedo ILM, Ho PL, Chudzinski-Tavassi AM: A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys 2010, 493(2):151-156.
  • [32]Valdés JJ, Schwarz A, Cabeza de Vaca I, Calvo E, Pedra JHF, Guallar V, Kotsyfakis M: Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One 2013., 8(5) e62562
  • [33]Waxman L, Smith D, Arcuri KE, Vlasuk GP: Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 1990, 248(4955):593-596.
  • [34]Mans BJ, Andersen JF, Schwan TG, Ribeiro JMC: Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect Biochem Mol Biol 2008, 38(1):22-41.
  • [35]Karczewski J, Endris R, Connolly TM: Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J Biol Chem 1994, 269(9):6702-6708.
  • [36]Mans BJ, Louw AI, Neitz AWH: Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J Biol Chem 2002, 277(24):21371-21378.
  • [37]Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, Stürzebecher J, Fuentes-Prior P, Pereira PJB: Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS ONE 2008, 3(2):e1624.
  • [38]Francischetti IM, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JM: Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 2002, 99(10):3602-3612.
  • [39]Francischetti IM, Mather TN, Ribeiro JM: Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb Haemost 2004, 91(5):886-898.
  • [40]Paesen GC, Siebold C, Dallas ML, Peers C, Harlos K, Nuttall PA, Nunn MA, Stuart DI, Esnouf RM: An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J Mol Biol 2009, 389(4):734-747.
  • [41]Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, et al.: The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 2009, 10(1):483-511.
  • [42]Mans BJ, Louw AI, Neitz AWH: Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the Genus Ornithodoros. Mol Biol Evol 2002, 19(10):1695-1705.
  • [43]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [44]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [45]Louw E, van der Merwe NA, Neitz AWH, Maritz-Olivier C: Evolution of the tissue factor pathway inhibitor-like Kunitz-domain-containing protein family in Rhipicephalus microplus. Int J Parasitol 2013, 43(1):81-94.
  • [46]Kwong PD, McDonald NQ, Sigler PB, Hendrickson WA: Structure of beta-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 1995, 3(10):1109-1119.
  • [47]Filshie BK, Campbell IC: Design of an insect cuticle associated with osmoregulation: the porous plates of chloride cells in a mayfly nymph. Tissue Cell 1984, 16(5):789-803.
  • [48]Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL: Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages. J Comp Physiol B 2007, 177(2):205-215.
  • [49]Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA: PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 2008, 36(suppl 2):W35-W41.
  • [50]Diez-Rivero CM, Reche PA: Discovery of conserved epitopes through sequence variability analysis. In Bioinformatics for immunomics. 3rd edition. Edited by Flower DDR, Davies M, Ranganathan S. New York City: Springer; 2009.
  • [51]Shannon CE: The mathematical theory of communication. Bell Syst Tech J 1948, 27:379-423. 623–656
  • [52]Tainer JA, Getzoff ED, Paterson Y, Olson AJ, Lerner RA: The atomic mobility component of protein antigenicity. Annu Rev Immunol 1985, 3:501-535.
  • [53]Demchenko AP: Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit 2001, 14(1):42-61.
  • [54]Dunker AK, Brown CJ, Lawson JD, Lakoucheva LM, Obradovic Z: Intrinsic disorder and protein function. Biochemistry (Mosc) 2002, 41(21):6573-6582.
  • [55]Doytchinova I, Flower D: VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinforma 2007, 8(1):4. BioMed Central Full Text
  • [56]Kozlowski LP, Bujnicki JM: MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinforma 2012, 13(1):111. BioMed Central Full Text
  • [57]Van Valen ML: A new evolutionary law. Evol Theory 1973, 1:1-30.
  • [58]Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26(19):2455-2457.
  • [59]Kosakovsky Pond SL, Frost SDW: Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22(5):1208-1222.
  • [60]Scheffler K, Martin DP, Seoighe C: Robust inference of positive selection from recombining coding sequences. Bioinformatics 2006, 22(20):2493-2499.
  • [61]Koonin EV: Logic of chance, the: the nature and origin of biological evolution. Upper Saddle River: FT Press; 2011.
  • [62]Wong ESW, Papenfuss AT, Whittington CM, Warren WC, Belov K: A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol 2012, 29(1):167-177.
  • [63]Jeyaprakash A, Hoy M: First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 2009, 47(1):1-18.
  • [64]Mans BJ, Neitz AWH: Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol 2004, 34(1):1-17.
  • [65]Zander RH: Evolutionary inferences from non-monophyly on molecular trees. Taxon 2008, 57(4):1182-1188.
  • [66]Andersen JF: Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 2010, 56(7):1120-1129.
  • [67]Corral-Rodriguez MA, Macedo-Ribeiro S, Barbosa-Pereira PJ, Fuentes-Prior P: Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol 2009, 39(9):579-595.
  • [68]Kovár L: Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol (Praha) 2004, 49(3):327-336.
  • [69]Andreotti R, Gomes A, Malavazi-Piza KC, Sasaki SD, Sampaio CAM, Tanaka AS: BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int Immunopharmacol 2002, 2(4):557-563.
  • [70]Tanaka AS, Andreotti R, Gomes A, Torquato RJ, Sampaio MU, Sampaio CA: A double headed serine proteinase inhibitor-human plasma kallikrein and elastase inhibitor from Boophilus microplus larvae. Immunopharmacology 1999, 45:171-177.
  • [71]Ascenzi P, Bocedi A, Bolognesi M, Spallarossa A, Coletta M, De Cristofaro R, Menegatti E: The bovine basic pancreatic trypsin inhibitor (Kunitz 506 inhibitor): a milestone protein. Curr Protein Pept Sci 2003, 4:231-251.
  • [72]Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res 2000, 28(1):263-266.
  • [73]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 2011, 8(10):785-786.
  • [74]Kelley LA, Sternberg MJE: Protein structure prediction on the web: a case study using the Phyre server. Nat Protocols 2009, 4(3):363-371.
  • [75]Schrödinger L: Maestro, version 9.1. New York, NY; 2010.
  • [76]Dembo RS: A primal truncated newton algorithm with application to large-scale nonlinear network optimization. In Computation Mathematical Programming. 31st edition. Edited by Hoffman KL, Jackson RHF, Telgen J. Berlin Heidelberg: Springer; 1987:43-71.
  • [77]Still WC, Tempczyk A, Hawley RC, Hendrickson T: Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990, 112(16):6127-6129.
  • [78]Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA: Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins Struct Funct Bioinf 2007, 66(4):824-837.
  • [79]Chen SW, Pellequer JL: Identification of functionally important residues in proteins using comparative models. Curr Med Chem 2004, 11:595-605.
  • [80]Pellequer JL, Chen SW: Multi-template approach to modeling engineered disulfide bonds. Proteins Struct Funct Bioinf 2006, 65(1):192-202.
  • [81]Litwin S, Jores R: In theoretical and experimental insights into immunology. Berlin: Springer-Verlag; 1992.
  • [82]Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292(2):195-202.
  • [83]Buchan DWA, Ward SM, Lobley AE, Nugent TCO, Bryson K, Jones DT: Protein annotation and modelling servers at University College London. Nucleic Acids Res 2010, 38(suppl 2):W563-W568.
  • [84]Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T: GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res 2010, 38(suppl 2):W23-W28.
  • [85]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3(5):418-426.
  • [86]Jukes TH, Cantor CR: Evolution of protein molecules. In Mammalian Protein Metabolism. Edited by Munro HN. New York: Academic Press; 1969:21-132.
  • [87]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23(10):1891-1901.
  • [88]Abascal F, Zardoya R, Telford MJ: TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 2010, 38:W7-W13.
  • [89]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [90]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 9(8):772-772.
  • [91]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [92]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29(8):1969-1973.
  • [93]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):e88.
  • [94]Gernhard T: The conditioned reconstructed process. J Theor Biol 2008, 253(4):769-778.
  • [95]Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV: Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012, 29(9):2157-2167.
  文献评价指标  
  下载次数:0次 浏览次数:2次