期刊论文详细信息
BMC Genomics
Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean
Dechun Wang2  Perry B Cregan3  Qijian Song3  Cathy Schmidt1  Martin I Chilvers2  Shichen Zhang2  Wenyan Du2  Carmille Bales2  Jiazheng Yuan2  Ruijuan Tan2  Zixiang Wen2 
[1] Agronomy Research Center, Southern Illinois University Carbondale, Carbondale, Illinois 62903-7002, USA;Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI 48824, USA;USDA, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland 20705, USA
关键词: Quantitative trait loci mapping;    SNPs;    Fusarium virguliforme;    Glycine max;    Genome wide association mapping;   
Others  :  1139552
DOI  :  10.1186/1471-2164-15-809
 received in 2014-05-08, accepted in 2014-08-18,  发布年份 2014
PDF
【 摘 要 】

Background

Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness.

Result

A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria.

Conclusions

This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.

【 授权许可】

   
2014 Wen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321205028482.pdf 1607KB PDF download
Figure 5. 46KB Image download
Figure 4. 20KB Image download
Figure 3. 125KB Image download
Figure 2. 140KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Roy KW, Rupe JCD, Hershman DE, Abney TS: Sudden death syndrome of soybean. Plant Dis 1997, 81:1100-1111.
  • [2]Wrather JA, Shannon G, Balardin R, Carregal L, Escobar R, Gupta GK, Ma Z, Morel W, Ploper D, Tenuta A: Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Progress 2010. doi:10.1094/PHP-2010- 0125-01-RS
  • [3]Jin H, Hartman GL, Nickell CD, Widholm JM: Characterization and purification of a phytotoxin produced by Fusarium solani, the causal agent of soybean sudden death syndrome. Phytopathology 1996, 86:277-282.
  • [4]Rupe JC, Hartman GL: Sudden death syndrome. In Compendium of Soybean Diseases. Edited by Hartman GL, Sinclair JB, Rupe JC. St. Paul: APS Press; 1999:37-39.
  • [5]Wrather JA, Koenning SR: Estimates of disease effects on soybean yields in the United States 2003 to 2005. J Nematology 2006, 38:173-180.
  • [6]Wrather JA, Koenning SR: Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progr 2009. doi:10.1094/PHP-2009-0401-01-RS
  • [7]de Farias Neto AL, Hartman GL, Pedersen WL, Li S, Bollero GA, Diers BW: Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI567374 and ‘Ripley’. Mol Breed 2007, 20:53-62.
  • [8]Hartman GL, Huang YH, Nelson RL, Noel GR: Germplasm evaluation of Glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Dis 1997, 81:515-551.
  • [9]Njiti VN, Johnson JE, Torto TA, Gray LE, Lightfoot DA: Inoculum rate influences selection for field resistance to sudden death syndrome in the greenhouse. Crop Sci 2001, 41:1726-1733.
  • [10]Luckew AS, Leandro LF, Bhattacharyya MK, Nordman DJ, Lightfoot DA, Cianzio SR: Usefulness of 10 genomic regions in soybean associated with sudden death syndrome resistance. Theor Appl Genet 2013, 126:2391-2403.
  • [11]Srour A, Afzal AJ, Blahut-Beatty L, Hemmati N, Simmonds DH, Li W, Liu M, Town CD, Sharma H, Arelli P, Lightfoot DA: The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genomics 2012, 13:368. doi:10.1186/1471-2164-13-368 BioMed Central Full Text
  • [12]Zhu CS, Gore M, Buckler ES, Yu JM: Status and prospects of association mapping in Plants. Plant Gen 2008, 1:5-20.
  • [13]Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, et al.: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010, 465:627-631.
  • [14]Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B: Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 2010, 42(11):961-967.
  • [15]Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB: Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 2011, 43:163-168.
  • [16]Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES: Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 2010, 43:159-162.
  • [17]Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D: Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 2012, 124:447-458.
  • [18]Wang J, McClean PE, Lee R, Goos RJ, Helms T: Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 2008, 116:777-787.
  • [19]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, et al.: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
  • [20]Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB: Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 2013, 8(1):e54985. doi:10.1371/journal.pone.0054985
  • [21]Muller DS, Hartman GL, Nelson RL, Pedersen WL: Evaluation of Glycine max germplasm for resistance to Fusarium solani f. sp. glycines. Plant Disease 2002, 86:741-746.
  • [22]Gelin JR, Arelli PR, Rojas-Cifuentes PR: Using independent culling to screen plant introductions for combined resistance to soybean cyst nematode and sudden death syndrome. Crop Sci 2006, 46:2081-2083.
  • [23]Kisha T, Sneller CH, Diers BW: Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci 1997, 37:1317-1325.
  • [24]Akond M, Liu S: A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genom Sci 2013, 1(3):80-89.
  • [25]Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y: High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breed 2010, 25:441-451.
  • [26]Fehr WR, Caviness CE, Burmood DT, Pennington JS: Stage of development descriptions for soybeans, Glycine max (L.)Merrill. Crop Sci 1971, 11:929-931.
  • [27]Nyquist WE: Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 1991, 10:235-322.
  • [28]Liu K, Muse SV: PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 2005, 21:2128-2129.
  • [29]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38:904-909.
  • [30]Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES: TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23:2633-2635.
  • [31]Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 2006, 38:203-208.
  • [32]Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES: Mixed linear model approach adapted for genome-wide association studies. Nat Genet 2010, 42:355-360.
  • [33]Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ: Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytologist 2010, 188:242-253.
  • [34]Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB: Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 2007, 175:1937-1944.
  • [35]Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J: Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 2009, 4(12):8451. doi:10.1371 /journal. pone.0008451
  • [36]Roberts EH, Qi A, Ellis RH, Summerfield RJ, Lawn RJ, Shanmugasundaram S: Use of field observations to characterize genotypic flowering responses to photoperiod and temperature: A soybean exemplar. Theor Appl Genet 1996, 93:519-533.
  • [37]Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The structure of haplotype blocks in the human genome. Science 2002, 296:2225-2229.
  • [38]Geddy R, Brown GG: Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 2007, 8:130. doi:10.1186/1471-2164-8-130 BioMed Central Full Text
  • [39]Kassem MA, Ramos L, Leandro L, Mbofung G, Hyten DL, Kantartzi SK, Grier RL IV, Njiti VN, Cianzio S, Meksem K: The ‘PI 438489B’ by ‘Hamilton’ SNP-based genetic linkage map of soybean [Glycine max (L.) Merr.] identified quantitative trait loci that underlie seedling SDS resistance. J Plant Genome Sci 2012, 1:18-30.
  • [40]Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodríguez C, Anderson LK, Somerville S, Marco Y, Molina A: Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 2007, 19:890-903.
  • [41]Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S, Shirasu K: Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci USA 2011, 108(35):14682-14687.
  • [42]Iqbal MJ, Meksem K, Njiti VN, Kassem MA, Lightfoot DA: Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex Forrest RILs. Theor Appl Genet 2001, 102:187-192.
  • [43]Bent AF, Mackey D: Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 2007, 45:399-436.
  • [44]Avrova AO, Taleb N, Rokka VM, Heilbronn J, Campbell E, Hein I, Gilroy EM, Cardle L, Bradshaw JE, Stewart HE, Fakim YJ, Loake G, Birch PR: Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Mol Plant Pathol 2004, 5(1):45-56.
  • [45]Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC: Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 2002, 99(16):10865-10869.
  • [46]Gupta SK, Rai AK, Kanwar SS, Shama TR: Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS ONE 2012, 7(8):e42578. doi:10.1371/ journal.pone.0042578
  • [47]Kim HS, Delaney TP: Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 2002, 14(7):1469-1482.
  • [48]Rock CO, Park HW, Jackowski S: Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J Bacteriol 2003, 185(11):3410-3415.
  • [49]Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y: Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 2010, 22(11):3845-3863.
  • [50]Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA: An updated Essex by Forrest linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 2006, 113:1015-1026.
  • [51]Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF: Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 2012, 338:1206-1209.
  • [52]Mysore KS, D'Ascenzo MD, He X, Martin GB: Overexpression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruitfly. Plant Physiol 2003, 132(4):1901-1912.
  • [53]Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP: Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 2004, 279(3):2101-2108.
  • [54]Steffens B, Sauter M: G proteins as regulators in ethylene-mediated hypoxia signaling. Plant Signal Behav 2010, 5(4):375-378.
  • [55]Kazi S, Shultz J, Afzal J, Johnson J, Njiti VN, Lightfoot DA: Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 2008, 116:967-977.
  • [56]Lorenc-Kukuła K, Zuk M, Kulma A, Czemplik M, Kostyn K, Skala J, Starzycki M, Szopa J: Engineering flax with the GT family 1 Solanum sogarandinum glycosyltransferase SsGT1 confers increased resistance to Fusarium infection. J Agric Food Chem 2009, 57(15):6698-6705.
  • [57]Webb DM, Baltazar BM, Rao-Arelli AP, Schupp J, Clayton K, Keim P, Beavis WD: Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437654. Theor Appl Genet 1995, 91:574-581.
  文献评价指标  
  下载次数:123次 浏览次数:69次