| BMC Research Notes | |
| Analysis of the microRNA transcriptome and expression of different isomiRs in human peripheral blood mononuclear cells | |
| Alok Bhattacharya4  Ritu Kulshreshtha1  Lalit Kumar3  Priyatama Pandey2  Richa Bharti2  Hafiz M Ahmad4  Candida Vaz2  | |
| [1] Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India;School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India;Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Science, New Delhi, India;School of Life Sciences Jawaharlal Nehru University, New Delhi 110067, India | |
| 关键词: Chronic myeloid leukemia (CML); Peripheral blood mononuclear cells (PBMC); miRnome; IsomiR; Normalization; Next generation sequencing; MicroRNA; | |
| Others : 1141497 DOI : 10.1186/1756-0500-6-390 |
|
| received in 2012-10-03, accepted in 2013-09-17, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
MicroRNAs (miRNAs) have been recognized as one of the key regulatory non-coding RNAs that are involved in a number of basic cellular processes. miRNA expression profiling helps to identify miRNAs that could serve as biomarkers. Next generation sequencing (NGS) platforms provide the most effective way of miRNA profiling, particularly as expression of different isoforms of miRNA (IsomiRs) can be estimated by NGS. Therefore, it is now possible to discern the overall complexity of miRNA populations that participate in gene regulatory networks. It is thus important to consider different isoforms of miRNA as part of total profiling in order to understand all aspects of the biology of miRNAs.
Results
Here next generation sequencing data of small RNAs derived from normal peripheral blood mononuclear cells (PBMC) and Chronic myeloid leukemia (CML) patients has been used to generate miRNA profiles using a computation pipeline which can identify isomiRs that are natural variants of mature miRNAs. IsomiR profiles have been generated for all the 5p and 3p miRNAs (previously known as major mature miRNA and minor or miRNA*) and the data has been presented as a composite total miRNA transcriptome. The results indicated that the most abundant isomiR sequence of about 68% miRNAs, did not match the reference miRNA sequence as entered in the miRBase and that there is a definite pattern in relative concentration of different isomiRs derived from same precursors. Finally, a total of 17 potential novel miRNA sequences were identified suggesting that there are still some new miRNAs yet to be discovered.
Conclusions
Inclusion of different isoforms provides a detailed miRnome of a cell type or tissues. Availability of miRnome will be useful for finding biomarkers of different cell types and disease states. Our results also indicate that the relative expression levels of different isoforms of a miRNA are likely to be dynamic and may change with respect to changes in the cell or differentiation status.
【 授权许可】
2013 Vaz et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150327061230256.pdf | 1047KB | ||
| Figure 6. | 33KB | Image | |
| Figure 5. | 44KB | Image | |
| Figure 4. | 65KB | Image | |
| Figure 3. | 44KB | Image | |
| Figure 2. | 54KB | Image | |
| Figure 1. | 63KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Kim VN, Nam JW: Genomics of microRNA. Trends Genet 2006, 22(3):165-173.
- [2]Lee Y, Han J, Yeom KH, Jin H, Kim VN: Drosha in primary microRNA processing. Cold Spring Harb Symp Quant Biol 2006, 71:51-57.
- [3]Tijsterman M, Plasterk RH: Dicers at RISC; the mechanism of RNAi. Cell 2004, 117(1):1-3.
- [4]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol 2005, 3(3):e85.
- [5]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
- [6]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003, 115(7):787-798.
- [7]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
- [8]Zhang R, Su B: Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution. J Genet Genomics 2009, 36(1):1-6.
- [9]Bartel DP, Chen CZ: Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004, 5(5):396-400.
- [10]Tanzer A, Stadler PF: Evolution of microRNAs. Methods Mol Biol 2006, 342:335-350.
- [11]Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E: An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 2005, 11(9):1461-1470.
- [12]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103(7):2257-2261.
- [13]Deng S, Calin GA, Croce CM, Coukos G, Zhang L: Mechanisms of microRNA deregulation in human cancer. Cell Cycle 2008, 7(17):2643-2646.
- [14]Almeida MI, Reis RM, Calin GA: MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011, 717:1-8.
- [15]Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004, 5(3):R13. BioMed Central Full Text
- [16]Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, Van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T: Identification of microRNAs of the herpesvirus family. Nature Meth 2005, 2:269-276.
- [17]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33(20):e179.
- [18]Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ: Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004, 32(22):e188.
- [19]Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR: Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004, 5(9):R68. BioMed Central Full Text
- [20]Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z: Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004, 1(2):155-161.
- [21]Creighton CJ, Reid JG, Gunaratne PH: Expression profiling of microRNAs by deep sequencing. Brief Bioinform 2009, 10(5):490-497.
- [22]'T Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, De Menezes RX, Boer JM, Van Ommen GJ, Den Dunnen JT: Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 2008, 36:e141.
- [23]Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008, 18:610-621.
- [24]Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A: Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics 2010, 11:288. BioMed Central Full Text
- [25]Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, Parsons PG, Schmidt C, Sturm RA, Hayward NK: Characterization of the Melanoma miRNAome by deep sequencing. PLoS One 2010, 12;5(3):e9685.
- [26]miRBase: the microRNA databasehttp://www.mirbase.org webcite
- [27]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157.
- [28]Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC: Widespread regulatory activity of vertebrate microRNA* species. RNA 2011, 17(2):312-326.
- [29]Czech B, Hannon GJ: Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011, 12(1):19-31.
- [30]The deep sequencing modules (Elimination and Novel miRNA prediction Pipelines)http://www.mirna.jnu.ac.in/deep_sequencing/deep_sequencing.html webcite
- [31]Tyagi S, Vaz C, Gupta V, Bhatia R, Maheshwari S, Srinivasan A, Bhattacharya A: CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun 2008, 372:831-834.
- [32]Agarwal S, Vaz C, Bhattacharya A, Srinivasan A: Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinforma 2010, 11(Suppl 1):S29. BioMed Central Full Text
- [33]Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008, 26:407-415.
- [34]Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 2007, 35:W339-W344.
- [35]Li SC, Liao YL, Ho MR, Tsai KW, Lai CH, Lin WC: miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics 2012, 13(Suppl 1):S13. BioMed Central Full Text
- [36]Gombar S, Jung HJ, Dong F, Calder B, Atzmon G, Barzilai N, Tian XL, Pothof J, Hoeijmakers JH, Campisi J, Vijg J, Suh Y: Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics 2012, 13:353. BioMed Central Full Text
- [37]Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A: miRandola: extracellular circulating microRNAs database. PLoS One 2012, 7(10):e47786.
- [38]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
PDF