期刊论文详细信息
BMC Genomics
Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize
Paulo CG Ferreira3  Adriana S Hemerly3  Laurent Farinelli1  Robert A Martienssen4  Michael Regulski4  Tauan Vieira3  Mariana Romeiro Motta3  Clícia Grativol3  Cristian A Rojas2  Flávia Thiebaut3 
[1] Fasteris SA, 1228-Plan-les-Ouates, Genève, Switzerland;Universidade Federal da INTEGRAÇÃO Latino-Americana, Av. Tancredo Neves, 6731, Bl.4, Foz do Iguaçu PR 85867-970, Brazil;Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Avenida Carlos Chagas Filho, 373, CCS, Bl.L-29ss, Rio de Janeiro RJ 21941-599, Brazil;Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
关键词: Epigenetics;    Azospirillum brasilense;    siRNA;    miRNA;    Herbaspirillum seropedicae;   
Others  :  1140806
DOI  :  10.1186/1471-2164-15-766
 received in 2014-01-08, accepted in 2014-08-22,  发布年份 2014
PDF
【 摘 要 】

Background

Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays – hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense.

Results

Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription.

Conclusion

Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

【 授权许可】

   
2014 Thiebaut et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325113619173.pdf 2520KB PDF download
Figure 8. 113KB Image download
Figure 7. 134KB Image download
Figure 6. 56KB Image download
Figure 5. 50KB Image download
Figure 4. 48KB Image download
Figure 3. 99KB Image download
Figure 2. 88KB Image download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Bartel DP, Lee R, Feinbaum R: MicroRNAs: genomics, biogenesis, mechanism, and function genomics. Cell 2004, 116:281-297.
  • [2]Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science 2005, 309:1567-1569.
  • [3]Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in plants. Genes Dev 2002, 16:1616-1626.
  • [4]Llave C, Kasschau KD, Rector MA, Carrington JC: Endogenous and silencing-associated small RNAs in plants. Society 2002, 14(July):1605-1619.
  • [5]Axtell MJ: Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 2013, 64(January):137-159.
  • [6]Kurihara Y, Takashi Y, Watanabe Y: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 2006, 12:206-212.
  • [7]Vaucheret H: Plant ARGONAUTES. Trends Plant Sci 2008, 13:350-358.
  • [8]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320:1185-1190.
  • [9]Jia X, Yan J, Tang G: MicroRNA-mediated DNA methylation in plants. Front Biol (Beijing) 2011, 6:133-139.
  • [10]Guo H, Xie Q, Fei J, Chua N: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Development 2005, 17(May):1376-1386.
  • [11]Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 2006, 57:19-53.
  • [12]Ma Z, Coruh C, Axtell MJ: Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell 2010, 22:1090-1103.
  • [13]Rajeswaran R, Aregger M, Zvereva AS, Borah BK, Gubaeva EG, Pooggin MM: Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res 2012, 40:6241-6254.
  • [14]Lam P, Zhao L, McFarlane HE, Aiga M, Lam V, Hooker TS, Kunst L: RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 2012, 159:1385-1395.
  • [15]Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC: Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 2010, 22:481-496.
  • [16]Qi Y, He X, Wang X-J, Kohany O, Jurka J, Hannon GJ: Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 2006, 443:1008-1012.
  • [17]Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan S, Carrington JC: Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 2007, 5:e57.
  • [18]Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJM, Matzke M: A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 2009, 28:48-57.
  • [19]Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE: Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 2004, 14:1214-1220.
  • [20]Simon SA, Meyers BC: Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 2011, 14:148-155.
  • [21]De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O: Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 2012, 160:2137-2154.
  • [22]Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu J-K, Yu O: Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 2008, 9:160. BioMed Central Full Text
  • [23]Baldani J, Goe SR, Döbereiner J: Recent advances in FBN with non-legume plants. Soil Biol Biochem 1997, 29:911-922.
  • [24]James EK, Olivares FL: Infection and colonization of sugar cane and other Graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 1997, 17:77-119.
  • [25]Kirchhof G, Reis V, Baldani J, Eckert B, Döbereiner J, Hartmann A: Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Dev Plant Soil Sci 1997, 75:45-55.
  • [26]Bothast RJ, Schlicher M: Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 2005, 67:19-25.
  • [27]Olivares FL, Baldani VLD, Reis VM: Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 1996, 20:197-200.
  • [28]Roesch LFW, Camargo F, Bento FM, Triplett EW: Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 2007, 302:91-104.
  • [29]Riggs P, Chelius M, Iniguez A, Kaeppler S, Triplett E: Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 2001, 28:829-836.
  • [30]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326:1112-1115.
  • [31]Zhang B, Pan X, Anderson TA: Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 2006, 580:3753-3762.
  • [32]Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP: Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 2012, 109:10444-10449.
  • [33]Kang M, Zhao Q, Zhu D, Yu J: Characterization of microRNAs expression during maize seed development. BMC Genomics 2012, 13:360. BioMed Central Full Text
  • [34]Santi C, Bogusz D, Franche C: Biological nitrogen fixation in non-legume plants. Ann Bot 2013, 111:743-767.
  • [35]Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A: In situ localization of Azospirillum in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 1995, 61:1013-1019.
  • [36]Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI: The effect of inoculating endophytic N 2 -fixing bacteria on micropropagated sugarcane plants. Plant Soil 2002, 242:205-215.
  • [37]James EK, Olivares FL, de Oliveira AL, dos Reis FB, da Silva LG, Reis VM: Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 2001, 52:747-760.
  • [38]Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 2011, 39(May):155-159.
  • [39]Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38:W64-W70.
  • [40]Mayer AM, Staples RC: Laccase: new functions for an old enzyme. Phytochemistry 2002, 60:551-565.
  • [41]Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M: Copper homeostasis. New Phytol 2009, 182:799-816.
  • [42]Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J-K: Criteria for annotation of plant MicroRNAs. Plant Cell 2008, 20:3186-3190.
  • [43]Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M: Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 2009, 21:2780-2796.
  • [44]Regulski M, Lu Z, Kendall J, Donoghue MT A, Reinders J, Llaca V, Deschamps S, Smith A, Levy D, McCombie WR, Tingey S, Rafalski A, Hicks J, Ware D, Martienssen RA: The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 2013, 23:1651-1662.
  • [45]Rubio-Somoza I, Cuperus JT, Weigel D, Carrington JC: Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol 2009, 12:622-627.
  • [46]Sunkar R, Chinnusamy V, Zhu J, Zhu J-K: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 2007, 12:301-309.
  • [47]Khraiwesh B, Zhu JJ-KJJ-K: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819, 2012:137-148.
  • [48]Simon S, Meyers BC, Sherrier DJ: MicroRNAs in the rhizobia legume symbiosis. Plant Physiol 2009, 151:1002-1008.
  • [49]Reinhold-Hurek B, Hurek T: Life in grasses: diazotrophic endophytes. Trends Microbiol 1998, 6:139-144.
  • [50]Cavalcante JJV, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI: Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 2007, 58:673-686.
  • [51]Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS: SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. J Exp Bot 2006, 57:559-569.
  • [52]Sevilla M, Burris R, Gunapala N, Kennedy C: Comparison of benefit to sugar cane plant growth of an 15 N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant–Microbe Interact 2001, 14:358-366.
  • [53]Baldotto A, Baldotto B, Estrela L, Santana B, Roberto C: Initial performance of maize in response to NPK fertilization combined. Rev Ceres 2012, 59:841-849.
  • [54]Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y: Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 2009, 103:29-38.
  • [55]Jiao Y, Song W, Zhang M, Lai J: Identification of novel maize miRNAs by measuring the precision of precursor processing. BMC Plant Biol 2011, 11:141. BioMed Central Full Text
  • [56]Ding D, Li W, Han M, Wang Y, Fu Z, Wang B, Tang J: Identification and characterisation of maize microRNAs involved in developing ears. Plant Biol 2014, 16:9-15.
  • [57]Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007, 2:e219.
  • [58]Staiger D, Korneli C, Lummer M, Navarro L: Emerging role for RNA-based regulation in plant immunity. New Phytol 2013, 197:394-404.
  • [59]Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006, 312:436-439.
  • [60]Sunkar R, Girke T, Jain PK, Zhu J: Cloning and characterization of microRNAs from rice. Plant Cell 2005, 17(5):1397-1411.
  • [61]Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14:787-799.
  • [62]Zanca AS, Vicentini R, Ortiz-Morea FA, Del Bem LE V, da Silva MJ, Vincentz M, Nogueira FTS: Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol 2010, 10:260. BioMed Central Full Text
  • [63]Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H: Copper cofactor delivery in plant cells. Curr Opin Plant Biol 2006, 9:256-263.
  • [64]Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D: A genome-wide characterization of microRNA genes in maize. PLoS Genet 2009, 5:e1000716.
  • [65]Adman E: Copper protein structures. Adv Protein Chem 1991, 42:145-197.
  • [66]Kroneck P: Redox properties of blue multi-copper oxidases. Multi-Copper Oxidases 1997, 391-407.
  • [67]Liu Z, Kumari S, Zhang L, Zheng Y, Ware D: Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 2012, 7:e39786.
  • [68]Lamb C, Dixon R: The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:251-275.
  • [69]Bowell G, Daudi A: Reactive oxygen species in plant–pathogen interactions. React Oxyg Species Plant Signal 2009, 113-133.
  • [70]Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H: Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 2011, 75:93-105.
  • [71]O’Malley DM, Whetten R, Bao W, Chen C-L, Sederoff RR: The role of of laccase in lignification. Plant J 1993, 4:751-757.
  • [72]Jagadeeswaran G, Saini A, Sunkar R: Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 2009, 229:1009-1014.
  • [73]Fridovich I: Superoxide radical and Superoxide dismutases. Annu Rev Biochem 1995, 64:97-112.
  • [74]Sunkar R, Kapoor A, Zhu J-K: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 2006, 18:2051-2065.
  • [75]Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN: High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 2011, 22:163-176.
  • [76]Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC: MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 2010, 22:1074-1089.
  • [77]Cuperus JT, Fahlgren N, Carrington JC: Evolution and functional diversification of MIRNA genes. Plant Cell Online 2011, 23:431-442.
  • [78]Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136:669-687.
  • [79]Dong Z, Han M-H, Fedoroff N: The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A 2008, 105:9970-9975.
  • [80]Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y: DNA methylation mediated by a microRNA pathway. Mol Cell 2010, 38:465-475.
  • [81]Vazquez F, Blevins T, Ailhas J, Boller T, Meins F: Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 2008, 36:6429-6438.
  • [82]Allen E, Xie Z, Gustafson AM, Sung G-H, Spatafora JW, Carrington JC: Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 2004, 36:1282-1290.
  • [83]Sun J, Zhou M, Mao Z, Li C: Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants. PLoS One 2012, 7:e34092.
  • [84]Li Y, Li C, Xia J, Jin Y: Domestication of transposable elements into MicroRNA genes in plants. PLoS One 2011, 6:e19212.
  • [85]Nozawa M, Miura S, Nei M: Origins and evolution of microRNA genes in plant species. Genome Biol Evol 2012, 81:1-35.
  • [86]Vicient CM: Transcriptional activity of transposable elements in maize. BMC Genomics 2010, 11:601. BioMed Central Full Text
  • [87]Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M, Arteaga-vazquez M, Sidorenko L, Jeong D, Yen Y, Green PJ, Chandler VL, Meyers BC: Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1–1 mutant. Proc Natl Acad Sci U S A 2008, 105:14958-14963.
  • [88]Slotkin RK, Martienssen R: Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007, 8:272-285.
  • [89]Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM: The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 1997, 100:241-252.
  • [90]Takeda S, Sugimoto K, Otsuki H, Hirochika H: Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 1998, 36:365-376.
  • [91]Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham A-L, Penterman J, Fischer RL, Voinnet O, Navarro L: Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 2013, 110:2389-2394.
  • [92]Zhang X: The epigenetic landscape of plants. Science 2008, 320:489-492.
  • [93]Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010, 11:204-220.
  • [94]Zemach A, McDaniel IE, Silva P, Zilberman D: Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010, 328:916-919.
  • [95]Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 2007, 39:61-69.
  • [96]Hoagland D, Arnon D: The water-culture method for growing plants without soil. California Agricultural Experiment Station 1950, 347:1-32.
  • [97]James E, Reis V, Olivares F, Baldani J, Döbereiner J, Dobereiner J: Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 1994, 45:757-766.
  • [98]Reis V, Olivares F, Döbereiner J: Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 1994, 10:401-405.
  • [99]Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson T: Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 2006, 63:246-254.
  • [100]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [101]Lawrence CJ, Harper LC, Schaeffer ML, Sen TZ, Seigfried TE, Campbell DA: MaizeGDB: The maize model organism database for basic, translational, and applied research. Int J Plant Genomics 2008, 2008:496957.
  • [102]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [103]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
  • [104]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [105]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33:e179.
  • [106]Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007, 3:12. BioMed Central Full Text
  文献评价指标  
  下载次数:11次 浏览次数:2次