期刊论文详细信息
BMC Genomics
Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis
Maria SS Felipe1,14  Ana TR Vasconcelos3  Leila M Lopes-Bezerra8  Jason E Stajich1,10  Sandro R Almeida1,11  Héctor M Mora-Montes4  Patrícia S Cisalpino2  Gustavo A Niño-Vega1,15  Bernard Henrissat1  José F da Silveira1,17  Sybren de Hoog6  Marcel ML Cunha8  Héctor Villalobos-Duno1,15  Marjorie M Marini1,17  Luciana M de Oliveira9  Marco A Soares9  Amanda LN Barros5  Tayná C dos Santos5  Fabiana FM de Oliveira5  Oberdan L Cunha3  Patrícia A Silva5  Claudia B Chaucanez5  Alan Viggiano Neto5  Luisa DF Peconick5  Vicente P Martins5  Alexandra L Gerber3  Patrícia Albuquerque7  André M Nicola1,14  Hugo C Paes5  Nathalia C de Andrade8  Jeronimo C Ruiz2  Rangel C Souza3  Karen S Ferreira1,13  Lorena S Derengowski5  Larissa Fernandes1,16  Ana KR Abadio5  Érika S Kioshima1,12  Fernanda L Alves2  Paula Kubitschek-Barreira8  Luiz GP de Almeida3  Marcus M Teixeira5 
[1] Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France;Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG, Brazil;Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil;Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico;Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil;CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands;Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF, Brazil;Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil;Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil;Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA;Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP, Brazil;Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brazil;Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP, Brazil;Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil;Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela;Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF, Brazil;Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
关键词: Fungal evolution;    Comparative genomics;    Sporothrix brasiliensis;    Sporothrix schenckii;   
Others  :  1127805
DOI  :  10.1186/1471-2164-15-943
 received in 2014-02-11, accepted in 2014-09-25,  发布年份 2014
PDF
【 摘 要 】

Background

The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes.

Results

The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE’s) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style.

Conclusions

Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.

【 授权许可】

   
2014 Teixeira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221103330237.pdf 2685KB PDF download
Figure 9. 92KB Image download
Figure 8. 118KB Image download
Figure 7. 139KB Image download
Figure 6. 66KB Image download
Figure 5. 151KB Image download
Figure 4. 29KB Image download
Figure 3. 112KB Image download
Figure 2. 74KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J: Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 2007, 45(10):3198-3206.
  • [2]Rodrigues AM, de Hoog S, de Camargo ZP: Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol: Offic Publ Int Soc Hum Anim Mycol 2013, 51(4):405-412.
  • [3]Silva-Vergara ML, de Camargo ZP, Silva PF, Abdalla MR, Sgarbieri RN, Rodrigues AM, dos Santos KC, Barata CH, Ferreira-Paim K: Disseminated Sporothrix brasiliensis infection with endocardial and ocular involvement in an HIV-infected patient. Am J Trop Med Hyg 2012, 86(3):477-480.
  • [4]Rosane Orofino-Costa NU, Alexandre Carlos G, de Macedo PM, Arles B, Emylli D, de Melo Teixeira M, Maria Sueli F, Bernardes-Engemann AR, Leila Maria L-B: Pulmonary cavitation and skin lesions mimicking tuberculosis in a HIV negative patient caused by Sporothrix brasiliensis. Med Mycol Case Rep 2013, 2:7.
  • [5]Oliveira MM, Almeida-Paes R, Muniz MM, Gutierrez-Galhardo MC, Zancope-Oliveira RM: Phenotypic and molecular identification of Sporothrix isolates from an epidemic area of sporotrichosis in Brazil. Mycopathologia 2011, 172(4):257-267.
  • [6]Rodrigues AM, de Melo TM, de Hoog GS, Schubach TM, Pereira SA, Fernandes GF, Bezerra LM, Felipe MS, de Camargo ZP: Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis 2013, 7(6):e2281.
  • [7]Feeney KT, Arthur IH, Whittle AJ, Altman SA, Speers DJ: Outbreak of sporotrichosis, Western Australia. Emerg Infect Dis 2007, 13(8):1228-1231.
  • [8]Song Y, Yao L, Zhong SX, Tian YP, Liu YY, Li SS: Infant sporotrichosis in northeast China: a report of 15 cases. Int J Dermatol 2011, 50(5):522-529.
  • [9]Sivagnanam S, Bannan AM, Chen SC, Ralph AP: Sporotrichosis (Sporothrix schenckii infection) in the New South Wales mid-north coast, 2000–2010. Med J Aust 2012, 196(9):588-590.
  • [10]Verma S, Verma GK, Singh G, Kanga A, Shanker V, Singh D, Gupta P, Mokta K, Sharma V: Sporotrichosis in sub-himalayan India. PLoS Negl Trop Dis 2012, 6(6):e1673.
  • [11]Lopes-Bezerra LM, Schubach A, Costa RO: Sporothrix schenckii and sporotrichosis. An Acad Bras Cienc 2006, 78(2):293-308.
  • [12]Travassos LR, Lloyd KO: Sporothrix schenckii and related species of Ceratocystis. Microbiol Rev 1980, 44(4):683-721.
  • [13]Klein BS, Tebbets B: Dimorphism and virulence in fungi. Curr Opin Microbiol 2007, 10(4):314-319.
  • [14]Rappleye CA, Goldman WE: Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 2006, 60:281-303.
  • [15]de Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ: Phylogeny of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 2003, 95(3):434-441.
  • [16]Nemecek JC, Wuthrich M, Klein BS: Global control of dimorphism and virulence in fungi. Science 2006, 312(5773):583-588.
  • [17]Hou B, Zhang Z, Zheng F, Liu X: Molecular cloning, characterization and differential expression of DRK1 in Sporothrix schenckii. Int J Mol Med 2013, 31(1):99-104.
  • [18]Latge JP: Tasting the fungal cell wall. Cell Microbiol 2010, 12(7):863-872.
  • [19]Lopes-Bezerra L: Sporothrix schenckii cell wall peptidorhamnomannans. Front Microbiol 2011, 2:243.
  • [20]Lopez-Romero E, Reyes-Montes Mdel R, Perez-Torres A, Ruiz-Baca E, Villagomez-Castro JC, Mora-Montes HM, Flores-Carreon A, Toriello C: Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol 2011, 6(1):85-102.
  • [21]Morris-Jones R, Youngchim S, Gomez BL, Aisen P, Hay RJ, Nosanchuk JD, Casadevall A, Hamilton AJ: Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection. Infect Immun 2003, 71(7):4026-4033.
  • [22]Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H: Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 2000, 68(6):3696-3703.
  • [23]Teixeira PA, De Castro RA, Ferreira FR, Cunha MM, Torres AP, Penha CV, Rozental S, Lopes-Bezerra LM: L-DOPA accessibility in culture medium increases melanin expression and virulence of Sporothrix schenckii yeast cells. Med Mycol: Offic Publ Int Soc Hum Anim Mycol 2010, 48(5):687-695.
  • [24]Zhang Y, Hagen F, Stielow B, Rodrigues AM, Samerpitak K, Xun Z, Feng P, Yang L, Chen M, Deng S, Li S, Liao W, Li R, Li F, Meis JF, Guarro J, Teixeira MM, Al-Zahrani , Camargo ZP, Zhang L, Hoog S: Phylogeography and evolutionary patterns in Sporothrix species with a pathogenic potential for mammals. Persooniain press
  • [25]de Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, Wingfield MJ: Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 2008, 100(4):647-661.
  • [26]DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, Tsui CK, Docking RT, Levasseur A, Haridas S, Robertson G, Birol I, Holt RA, Marra MA, Hamelin RC, Hirst M, Jones SJ, Bohlmann J, Breuil C: Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci U S A 2011, 108(6):2504-2509.
  • [27]Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kesley RG, Negron JF, Seybold SJ: Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. Bioscience 2010, 60(8):12.
  • [28]Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, et al.: Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 2011, 7(8):e1002230.
  • [29]Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW: Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 2009, 19(10):1722-1731.
  • [30]Theodoro RC, Teixeira Mde M, Felipe MS, Paduan Kdos S, Ribolla PM, San-Blas G, Bagagli E: Genus paracoccidioides: species recognition and biogeographic aspects. PLoS One 2012, 7(5):e37694.
  • [31]Ambrosio AB, do Nascimento LC, Oliveira BV, Teixeira PJ, Tiburcio RA, Toledo Thomazella DP, Leme AF, Carazzolle MF, Vidal RO, Mieczkowski P, Meinhardt LW, Pereira GA, Cabrera OG: Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics 2013, 14:91.
  • [32]Dujon B: Group I introns as mobile genetic elements: facts and mechanistic speculations–a review. Gene 1989, 82(1):91-114.
  • [33]Cummings DJ, McNally KL, Domenico JM, Matsuura ET: The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 1990, 17(5):375-402.
  • [34]Lambowitz AM, Perlman PS: Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci 1990, 15(11):440-444.
  • [35]Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G: Genes within genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of Ophiostoma and related taxa. Mol Biol Evol 2009, 26(10):2299-2315.
  • [36]Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO, Payne G, Andrianopoulos A, Denning DW, Nierman WC: Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 2012, 13:698.
  • [37]Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li C, Liu L, Cao L, Xu X, Xing Y, Hsiang T, Zhang Z, Xu JR, Peng YL: Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 2012, 8(8):e1002869.
  • [38]Daboussi MJ, Capy P: Transposable elements in filamentous fungi. Annu Rev Microbiol 2003, 57:275-299.
  • [39]Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, et al.: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007, 317(5843):1400-1402.
  • [40]Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, et al.: The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003, 422(6934):859-868.
  • [41]Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailao AM, Brigido MM, Ferreira ME, Garcia AM, Grynberg M, Gujja S, Heiman DI, Henn MR, Kodira CD, Leon-Narvaez H, Longo LV, Ma LJ, Malavazi I, Matsuo AL, Morais FV, Pereira M, Rodriguez-Brito S, Sakthikumar S, Salem-Izacc SM, Sykes SM, Teixeira MM, Vallejo MC, Walter ME, Yandava C, Young S, et al.: Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet 2011, 7(10):e1002345.
  • [42]Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, et al.: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011, 12(4):R40.
  • [43]Teixeira MM, Rodrigues AM, Tsui CK, Almeida LGP, Van Diepeningen AD, Van Den Ende BG, Sovegni GF, Kano R, Hamelin RC, Bezerra LM, Vasconcelos ATR, De Hoog GS, Camargo ZP, Felipe MS: Clonal expansion of a highly virulent mating type in epidemic outbreak of human and feline sporothrichosis. Euk Cellin press
  • [44]Heitman J, Sun S, James TY: Evolution of fungal sexual reproduction. Mycologia 2013, 105(1):1-27.
  • [45]Kraaijeveld K, Zwanenburg B, Hubert B, Vieira C, De Pater S, Van Alphen JJ, Den Dunnen JT, De Knijff P: Transposon proliferation in an asexual parasitoid. Mol Ecol 2012, 21(16):3898-3906.
  • [46]Dolgin ES, Charlesworth B: The fate of transposable elements in asexual populations. Genetics 2006, 174(2):817-827.
  • [47]Forslund K, Sonnhammer EL: Evolution of protein domain architectures. Methods Mol Biol 2012, 856:187-216.
  • [48]Bueter CL, Specht CA, Levitz SM: Innate sensing of chitin and chitosan. PLoS Pathog 2013, 9(1):e1003080.
  • [49]Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA: Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011, 73:479-501.
  • [50]Mora-Montes HM, Netea MG, Ferwerda G, Lenardon MD, Brown GD, Mistry AR, Kullberg BJ, O'Callaghan CA, Sheth CC, Odds FC, Brown AJ, Munro CA, Gow NA: Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect Immun 2011, 79(5):1961-1970.
  • [51]Koller B, Muller-Wiefel AS, Rupec R, Korting HC, Ruzicka T: Chitin modulates innate immune responses of keratinocytes. PLoS One 2011, 6(2):e16594.
  • [52]de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP: Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010, 329(5994):953-955.
  • [53]Martinez DA, Oliver BG, Graser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, Brakhage AA, Chen Z, Gurr SJ, Heiman D, Heitman J, Kosti I, Rossi A, Saif S, Samalova M, Saunders CW, Shea T, Summerbell RC, Xu J, Young S, Zeng Q, Birren BW, Cuomo CA, White TC: Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio 2012, 3(5):e00259-00212. http://mbio.asm.org/content/3/5/e00259-12 webcite
  • [54]Rojas AM, Fuentes G, Rausell A, Valencia A: The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 2012, 196(2):189-201.
  • [55]Alspaugh JA, Cavallo LM, Perfect JR, Heitman J: RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 2000, 36(2):352-365.
  • [56]Waugh MS, Nichols CB, DeCesare CM, Cox GM, Heitman J, Alspaugh JA: Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 2002, 148(Pt 1):191-201.
  • [57]Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Knauf V, Browse J: Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 2001, 293(5528):290-293.
  • [58]Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA: Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 1998, 187(2):79-89.
  • [59]Campbell CD, Vederas JC: Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 2010, 93(9):755-763.
  • [60]Keller NP, Turner G, Bennett JW: Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 2005, 3(12):937-947.
  • [61]Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG: Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 2003, 100(26):15670-15675.
  • [62]Alexander NJ, McCormick SP, Hohn TM: TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol General Genet: MGG 1999, 261(6):977-984.
  • [63]Soanes DM, Talbot NJ: Comparative genome analysis reveals an absence of leucine-rich repeat pattern-recognition receptor proteins in the kingdom Fungi. PLoS One 2010, 5(9):e12725.
  • [64]Sun CH, McCaffery JM, Reiner DS, Gillin FD: Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 2003, 278(24):21701-21708.
  • [65]Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, et al.: The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309(5733):416-422.
  • [66]Lujan HD, Mowatt MR, Conrad JT, Bowers B, Nash TE: Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 1995, 270(49):29307-29313.
  • [67]Deitsch KW, Lukehart SA, Stringer JR: Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 2009, 7(7):493-503.
  • [68]Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PW, Goodwin TJ, Quail MA, McQuillan J, Munro CA, Pain A, Poulter RT, Rajandream MA, Renauld H, Spiering MJ, Tivey A, Gow NA, Barrell B, Sullivan DJ, Berriman M, et al.: Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 2009, 19(12):2231-2244.
  • [69]Freitag M, Williams RL, Kothe GO, Selker EU: A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A 2002, 99(13):8802-8807.
  • [70]Horns F, Petit E, Yockteng R, Hood ME: Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol Evol 2012, 4(3):240-247.
  • [71]Yonemasu R, McCready SJ, Murray JM, Osman F, Takao M, Yamamoto K, Lehmann AR, Yasui A: Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. Nucleic Acids Res 1997, 25(8):1553-1558.
  • [72]Nguyen VQ, Sil A: Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci U S A 2008, 105(12):4880-4885.
  • [73]Cain CW, Lohse MB, Homann OR, Sil A, Johnson AD: A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 2012, 190(2):511-521.
  • [74]Duran A, Nombela C: Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology 2004, 150(Pt 10):3099-3103.
  • [75]Teixeira PA, de Castro RA, Nascimento RC, Tronchin G, Torres AP, Lazera M, de Almeida SR, Bouchara JP, Penha CV L y, Lopes-Bezerra LM: Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. Microbiology 2009, 155(Pt 11):3730-3738.
  • [76]Ruiz-Baca E, Toriello C, Perez-Torres A, Sabanero-Lopez M, Villagomez-Castro JC, Lopez-Romero E: Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix schenckii involved in fungal adherence to dermal extracellular matrix. Med Mycol: Offic Publ Int Soc Hum Anim Mycol 2009, 47(2):185-196.
  • [77]Castro RA, Kubitschek-Barreira PH, Teixeira PA, Sanches GF, Teixeira MM, Quintella LP, Almeida SR, Costa RO, Camargo ZP, Felipe MS, de Souza W, Lopes-Bezerra LM: Differences in cell morphometry, cell wall topography and Gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One 2013, 8(10):e75656.
  • [78]Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD: Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 2008, 10(8):1695-1710.
  • [79]Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A: Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008, 7(1):58-67.
  • [80]Kubitschek-Barreira PH, Curty N, Neves GW, Gil C, Lopes-Bezerra LM: Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. J Proteomics 2013, 78:522-534.
  • [81]Previato JO, Gorin PAJ, Travassos LR: Cell-wall composition in different cell-types of the dimorphic species sporothrix-schenckii. Exp Mycol 1979, 3(1):83-91.
  • [82]Previato JO, Gorin PAJ, Haskins RH, Travassos LR: Soluble and insoluble glucans from different cell types of the human pathogen Sporothrix schenckii. Exp Mycol 1979, 3(1):14.
  • [83]Lenardon MD, Munro CA, Gow NA: Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 2010, 13(4):416-423.
  • [84]Nino-Vega GA, Sorais F, San-Blas G: Transcription levels of CHS5 and CHS4 genes in Paracoccidioides brasiliensis mycelial phase, respond to alterations in external osmolarity, oxidative stress and glucose concentration. Mycol Res 2009, 113(Pt 10):1091-1096.
  • [85]Latge JP: The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007, 66(2):279-290.
  • [86]Mandel MA, Galgiani JN, Kroken S, Orbach MJ: Coccidioides posadasii contains single chitin synthase genes corresponding to classes I to VII. Fungal Genet Biol: FG & B 2006, 43(11):775-788.
  • [87]Martin-Urdiroz M, Roncero MI, Gonzalez-Reyes JA, Ruiz-Roldan C: ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 2008, 7(1):112-121.
  • [88]Takeshita N, Yamashita S, Ohta A, Horiuchi H: Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 2006, 59(5):1380-1394.
  • [89]Takeshita N, Ohta A, Horiuchi H: csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 2002, 298(1):103-109.
  • [90]Frade-Pérez M, Hernández-Cervantes A, Flores-Carreón A, Mora-Montes HM: Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli. Antonie Van Leeuwenhoek 2010, 98(3):291-298.
  • [91]Robledo-Ortiz CI, Flores-Carreón A, Hernández-Cervantes A, Álvarez-Vargas A, Lee KK, Díaz-Jiménez DF, Munro CA, Cano-Canchola C, Mora-Montes HM: Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biol 2012, 116(8):910-918.
  • [92]Mora-Montes HM, Robledo-Ortiz CI, González-Sánchez LC, López-Esparza A, López-Romero E, Flores-Carreón A: Purification and biochemical characterisation of endoplasmic reticulum α1,2-mannosidase from Sporothrix schenckii. Mem Inst Oswaldo Cruz 2010, 105(1):79-85.
  • [93]Lee J, Park S-H, Stanley P: Antibodies that recognize bisected complex N-glycans on cell surface glycoproteins can be made in mice lacking N-acetylglucosaminyltransferase III. Glycoconj J 2002, 19(3):211-219.
  • [94]Nakamura Y: Purification and isolation of a biologically active peptido-rhamnogalactan from Sporothrix schenckii. J Dermatol 1976, 3(1):25-29.
  • [95]El-Ganiny AM, Sanders DAR, Kaminskyj SGW: Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogensis, and conidiation. Fungal Genet Biol 2008, 45(12):1533-1542.
  • [96]Alviano CS, Pereira MEA, Souza W, Oda LM, Travassos LR: Sialic acids are surface components of Sporothrix schenckii yeast forms. FEMS Microbiol Lett 1982, 15(3):223-228.
  • [97]Lopes-Alves LM, Mendonca-Previato L, Fournet B, Degand P, Previato JO: O-glycosidically linked oligosaccharides from peptidorhamnomannans of Sporothrix schenckii. Glycoconj J 1992, 9(2):75-81.
  • [98]Madduri K, Waldron C, Merlo DJ: Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol 2001, 183(19):5632-5638.
  • [99]Watt G, Leoff C, Harper AD, Bar-Peled M: A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis. Plant Physiol 2004, 134(4):1337-1346.
  • [100]Martinez V, Ingwers M, Smith J, Glushka J, Yang T, Bar-Peled M: Biosynthesis of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi Magnaporthe grisea and Botryotinia fuckeliana. J Biol Chem 2011, 287(2):879-892.
  • [101]Plonka PM, Grabacka M: Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol 2006, 53(3):429-443.
  • [102]Eisenman HC, Casadevall A: Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 2012, 93(3):931-940.
  • [103]Almeida-Paes R, Frases S, Araujo Gde S, de Oliveira MM, Gerfen GJ, Nosanchuk JD, Zancope-Oliveira RM: Biosynthesis and functions of a melanoid pigment produced by species of the sporothrix complex in the presence of L-tyrosine. Appl Environ Microbiol 2012, 78(24):8623-8630.
  • [104]Almeida-Paes R, Frases S, Fialho Monteiro PC, Gutierrez-Galhardo MC, Zancope-Oliveira RM, Nosanchuk JD: Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microb Infect/Institut Pasteur 2009, 11(5):554-562.
  • [105]Nosanchuk JD, Casadevall A: Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 2006, 50(11):3519-3528.
  • [106]Fernandes KS, Coelho AL, Lopes Bezerra LM, Barja-Fidalgo C: Virulence of Sporothrix schenckii conidia and yeast cells, and their susceptibility to nitric oxide. Immunology 2000, 101(4):563-569.
  • [107]Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [108]Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5:59.
  • [109]Stanke M, Waack S: Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003, 19(Suppl 2):ii215-ii225.
  • [110]Slater GS, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005, 6:31.
  • [111]Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR: Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 2008, 9(1):R7.
  • [112]Almeida LG, Paixao R, Souza RC, Costa GC, Barrientos FJ, Santos MT, Almeida DF, Vasconcelos AT: A System for Automated Bacterial (genome) Integrated Annotation–SABIA. Bioinformatics 2004, 20(16):2832-2833.
  • [113]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-467.
  • [114]Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AF, Finn RD: Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res 2013, 41(Database issue):D70-D82.
  • [115]Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A: The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011, 39(Database issue):D70-D74.
  • [116]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-D229.
  • [117]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [118]Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH: A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007, 8(12):973-982.
  • [119]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.
  • [120]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37(Database issue):D233-D238.
  • [121]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [122]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-763.
  • [123]Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM: The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 2001, 29(1):37-40.
  • [124]Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 1997, 28(3):405-420.
  • [125]Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 1998, 95(11):5857-5864.
  • [126]Storey JD, Tibshirani R: Statistical significance for genome-wide studies. Proc Natl Acad Sci 2003, 100:9440-9445.
  • [127]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100(16):9440-9445.
  • [128]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [129]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [130]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21(9):2104-2105.
  • [131]Guindon S, Delsuc F, Dufayard JF, Gascuel O: Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009, 537:113-137.
  • [132]Durand D, Halldorsson BV, Vernot B: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol: J Comput Mol Cell Biol 2006, 13(2):320-335.
  • [133]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [134]Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005, 21(4):456-463.
  • [135]Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19(2):301-302.
  • [136]Taylor JW, Berbee ML: Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 2006, 98(6):838-849.
  • [137]Lucking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT: Fungi evolved right on track. Mycologia 2009, 101(6):810-822.
  • [138]de Groot PW, Brandt BW: ProFASTA: a pipeline web server for fungal protein scanning with integration of cell surface prediction software. Fungal Genet Biol 2012, 49(2):173-179.
  • [139]Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S: FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 2011, 12:192.
  • [140]Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F: A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 2004, 337(2):243-253.
  • [141]Suzuki K, Ohsumi Y: Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007, 581(11):2156-2161.
  • [142]Weinberg J, Drubin DG: Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2012, 22(1):1-13.
  文献评价指标  
  下载次数:67次 浏览次数:10次