期刊论文详细信息
BMC Genomics
Structural and functional diversity of free-living microorganisms in reef surface, Kra island, Thailand
Sissades Tongsima2  Sithichoke Tangphatsornruang2  Duangjai Sangsrakru2  Somchai Monanunsap1  Anunchai Assawamakin4  Alisa Wilantho2  Naraporn Somboonna3 
[1] Department of Marine and Coastal Resources, Ministry of Natural Resources and Environment, Bangkok 10400, Thailand;Genome Institute, National Center for Genetic Engineering and Biotechnology, Khlong Nueng, Khlong Luang, Pathum thani 12120, Thailand;Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
关键词: Pyrosequencing;    Reef surface;    18S ribosomal RNA;    16S ribosomal RNA;    Eukaryote;    Prokaryote;    Biodiversity;   
Others  :  1216466
DOI  :  10.1186/1471-2164-15-607
 received in 2013-06-14, accepted in 2014-05-30,  发布年份 2014
PDF
【 摘 要 】

Background

Coral reefs worldwide are being harmed through anthropogenic activities. Some coral reefs in Thailand remain well-preserved, including the shallow coral reefs along Kra island, Nakhon Si Thammarat province. Interestingly, the microbial community in this environment remains unknown. The present study identified biodiversity of prokaryotes and eukaryotes of 0.22-30 μm in sizes and their metabolic potentials in this coral reef surface in summer and winter seasons, using 16S and 18S rRNA genes pyrosequencing.

Results

The marine microbial profiles in summer and winter seasons comprised mainly of bacteria, in phylum, particular the Proteobacteria. Yet, different bacterial and eukaryotic structures existed between summer and winter seasons, supported by low Lennon and Yue & Clayton theta similarity indices (8.48-10.43% for 16S rRNA, 0.32-7.81% for 18S rRNA ). The topmost prokaryotic phylum for the summer was Proteobacteria (99.68%), while for the winter Proteobacteria (62.49%) and Bacteroidetes (35.88%) were the most prevalent. Uncultured bacteria in phyla Cyanobacteria, Planctomycetes, SAR406 and SBR1093 were absent in the summer. For eukaryotic profiles, species belonging to animals predominated in the summer, correlating with high animal activities in the summer, whereas dormancy and sporulation predominated in the winter. For the winter, eukaryotic plant species predominated and several diverse species were detected. Moreover, comparison of our prokaryotic databases in summer and winter of Kra reef surface against worldwide marine culture-independent prokaryotic databases indicated our databases to most resemblance those of coastal Sichang island, Chonburi province, Thailand, and the 3 tropical GOS sites close to Galapagos island (GS039, GS040 and GS045), in orderly.

Conclusions

The study investigated and obtained culture-independent databases for marine prokaryotes and eukaryotes in summer and winter seasons of Kra reef surface. The data helped understand seasonal dynamics of microbial structures and metabolic potentials of this tropical ecosystem, supporting the knowledge of the world marine microbial biodiversity.

【 授权许可】

   
2014 Somboonna et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630182053443.pdf 1785KB PDF download
Figure 9. 49KB Image download
Figure 8. 47KB Image download
Figure 7. 41KB Image download
Figure 6. 124KB Image download
Figure 5. 98KB Image download
Figure 4. 95KB Image download
Figure 3. 54KB Image download
Figure 2. 49KB Image download
Figure 1. 108KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, et al.: The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 2007, 5:e77.
  • [2]Biers EJ, Sun S, Howard EC: Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl Environ Microbiol 2009, 75:2221-2229.
  • [3]Zinger L, Ammaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Martiny JBH, Sogin M, Bortius A, Ramette A: Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 2011, 6:e24570.
  • [4]Somboonna N, Assawamakin A, Wilantho A, Tangphatsornruang S, Tongsima S: Metagenomic profiles of free-living archaea, bacteria and small eukaryotes in coastal areas of Sichang island, Thailand. BMC Genomics 2012, 13(Suppl7):S29. doi:10.1186/1471-2164-13-S7-S29
  • [5]Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Thurber RV, Willis BL, Azam F, Knowlton N, Rohwer F: Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 2008, 3:e1584.
  • [6]Huang LN, Zhou H, Chen YQ, Luo S, Lan CY, Qu LH: Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett 2002, 214:235-240.
  • [7]Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR: Methanococcus aeolicus sp. nov., a mesophilic, methanogenic aechaeon from shallow and deep marine sediments. Intl J Syst Evol Microbiol 2006, 56:1525-1529.
  • [8]Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP: Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 2009, 100:5132-5139.
  • [9]Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I, Somerfield PJ, Mühling M: The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 2010, 5:e15545. doi:10.1371/journal.pone.0015545
  • [10]Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D: Defining seasonal marine microbial community dynamics. ISME J 2012, 6:298-308.
  • [11]Spalding MD, Grenfell AM: New estimates of global and regional coral reef areas. Coral Reefs 1997, 16:225-230.
  • [12]Bryant D, Burke L, McManus J, Spalding M: Reefs at risk: a map-based indicator of threats to the world’s coral reefs. Cambridge: UNEP-WCMC; 1998.
  • [13]Spalding MD, Green EP, Ravilious C: World atlas of coral reefs. California: University of California Press and UNEP/WCMC; 2001.
  • [14]Burke L, Reytar K, Spalding M, Perry A: Reefs at risk revisited. World Resources Institute: Washington; 2011.
  • [15]Rohwer F, Seguritan V, Azam F, Knowlton N: Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 2002, 243:1-10.
  • [16]Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E: The coral probiotic hypothesis. Environ Microbiol 2006, 8:2068-2073.
  • [17]Wegley L, Edwawrds R, Rodriguez-Brito B, Liu H, Rohwer F: Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 2007, 9:2707-2719.
  • [18]Lins-de-Barros MM, Cardoso AM, Silveira CB, Lima JL, Clementino MM, Martins OB, Albano RM, Vieira RP: Microbial community compositional shifts in bleached colonies of the Brazilian reef-building coral Siderastrea stellata. Microb Ecol 2013, 65:205-213.
  • [19]Vener JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:66-74.
  • [20]Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH: It’s all relative: ranking the diversity of aquatic bacterial communities. EMI 2008, 10:2200-2210.
  • [21]Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson K, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers Y-H, Friedman R, Frazier M, Venter JC: Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010, 468:60-66.
  • [22]Begum D, Murray J: Direct isolation of metagenomic DNA from environmental water samples. EPICENTRE forum 2008, 15:7-8.
  • [23]Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2010, 38:D5-D16.
  • [24]Maidak BL, Cole JR, Liburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM: The RDP-II (ribosomal database project). Nucleic Acids Res 2001, 29:173-174.
  • [25]McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Anderson GL, Knight R, Hugenholtz P: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2011. doi:10.1038/ismej.2011.139
  • [26]Brunak S, Danchin A, Hattori M, Nakamura H, Shinozaki K, Matise T, Preuss D: Nucleotide sequence database policies. Science 2002, 298:1333.
  • [27]Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Hoopen PT, Vaughan R, Zalunin V, Cochrane G: The European nucleotide archive. Nucleic Acids Res 2011, 39:D28-31.
  • [28]Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35:7188-7196.
  • [29]Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, De Crécy-Laqard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, et al.: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33:5691-702.
  • [30]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9:386. doi:10.1186/1471-2105-9-386
  • [31]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [32]Gordon DA, Giovannoni SJ: Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol 1996, 62:1171-1177.
  • [33]Björnsson L, Hugenholtz P, Tyson GW, Blackall LL: Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiol 2002, 8:2309-2318.
  • [34]Yue JC, Clayton MK: A similarity measure based on species proportions. Commun Stat Theor Methods 2005, 34:2123-2131.
  • [35]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  • [36]Francini-Filho RB, Coni EO, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Güth AZ, Sumida PY, Oliveira NL, Kaufman L, Minte-Vera CV, Moura RL: Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: inferences on natural and anthropogenic drivers. PLoS One 2013, 8:e54260. doi:10.1371/journal.pone.0054260
  • [37]Marine ecological metagenomics http://www.megx.net/metagenomes/metagenomes.html webcite
  • [38]Cho J-C, Giovannoni SJ: Croceibacter atlanticus gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae. System Appl Microbiol 2003, 26:76-83.
  • [39]BIOCYC database collection http://biocyc.org/CATL216432/NEW-IMAGE?type=PATHWAY&object=ARO-PWY webcite
  • [40]Bowman JP, Nowak B: Salmonid gill bacteria and their relationship to amoebic gill disease. J Fish Dis 2004, 27:483-492.
  • [41]Toth IK, Bell KS, Holeva MC, Birch PR: Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 2003, 4:17-30.
  • [42]Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J: Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 2005, 71:5107-5115.
  • [43]Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJ, Smith JE, Rohwer FL: Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc Biol Sci 2012, 279:1655-1664.
  • [44]Baker GC, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003, 55:541-555.
  • [45]Humblot C, Guyoet J-P: Pyrosequencing of tagged 16S rRNA gene amplicons for rapid diciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 2009, 75:4354-4361.
  • [46]Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. WJG 2010, 16:4135-4144.
  • [47]Diez B, Pedros-Alio C, Massana R: Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 2001, 67:2932-2941.
  • [48]Grant S, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S: Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Appl Environ Microbiol 2006, 72:135-143.
  • [49]Bailly J, Fraissinet-Tachet L, Verner M-C, Debaud J-C, Lemaire M, Wésolowski-Louvel M, Marmeisse R: Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 2007, 1:632-642.
  • [50]Meyer M, Stenzel U, Hofreiter M: Parallel tagged sequencing on the 454 platform. Nat Protoc 2008, 3:267-278.
  • [51]Chao A, Chazdon RL, Colwell RK, Shen T-J: Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 2006, 62:361-371.
  • [52]Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reick C, Stevens R, Vassieva O, Vonstein V, Wike A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. doi:10.1186/1471-2164-9-75
  文献评价指标  
  下载次数:68次 浏览次数:18次