期刊论文详细信息
BMC Microbiology
Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation
Mitsuyoshi Ueda1  Kouichi Kuroda2  Hironobu Morisaka1  Mami Nambu2  Yohei Tatsukami2 
[1]Kyoto Industrial Science and Technology Innovation Center, Shimogyo-ku, Kyoto 600-8813, Japan
[2]Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
关键词: KEGG;    Rhizobase;    Nitrogen fixation;    Monolithic column;    Plant-microbe interaction;    Proteome analysis;    Symbiosis;    Lotus japonicus;    Mesorhizobium loti;   
Others  :  1143351
DOI  :  10.1186/1471-2180-13-180
 received in 2013-03-21, accepted in 2013-07-26,  发布年份 2013
PDF
【 摘 要 】

Background

Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts.

Result

We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition.

Conclusion

The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions.

【 授权许可】

   
2013 Tatsukami et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329052745180.pdf 656KB PDF download
Figure 5. 31KB Image download
Figure 4. 89KB Image download
Figure 3. 44KB Image download
Figure 2. 70KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gibson KE, Kobayashi H, Walker GC: Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 2008, 42:413-441.
  • [2]Denarie J, Debelle F, Prome JC: Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 1996, 65:503-535.
  • [3]Oldroyd GE, Downie JA: Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 2008, 59:519-546.
  • [4]Prell J, Poole P: Metabolic changes of rhizobia in legume nodules. Trends Microbiol 2006, 14:161-168.
  • [5]Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000, 7:381-406.
  • [6]Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shimpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S: Genome structure of the legume, Lotus japonicus. DNA Res 2008, 15:227-239.
  • [7]Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K: Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 2004, 186:2439-2448.
  • [8]Tyers M, Mann M: From genomics to proteomics. Nature 2003, 422:193-197.
  • [9]Kajiwara H, Kaneko T, Ishizaka M, Tajima S, Kouchi H: Protein profile of symbiotic bacteria Mesorhizobium loti MAFF303099 in mid-growth phase. Biosci Biotechnol Biochem 2003, 67:2668-2673.
  • [10]Hempel J, Zehner S, Gottfert M, Patschkowski T: Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 2009, 140:51-58.
  • [11]Sarma AD, Emerich DW: A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics 2006, 6:3008-3028.
  • [12]Nomura M, Arunothayanan H, Dao TV, Le HTP, Kaneko T, Sato S, Tabata S, Tajima S: Differential protein profiles of Bradyrhizobium japonicum USDA110 bacteroid during soybean nodule development. Soil Sci Plant Nutr 2010, 56:579-590.
  • [13]Sarma AD, Emerich DW: Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Proteomics 2005, 5:4170-4184.
  • [14]Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G: An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 2010, 10:1391-1400.
  • [15]Chen H, Teplitski M, Robinson JB, Rolfe BG, Bauer WD: Proteomic analysis of wild-type Sinorhizobium meliloti responses to N-acyl homoserine lactone quorum-sensing signals and the transition to stationary phase. J Bacteriol 2003, 185:5029-5036.
  • [16]Torres-Quesada O, Oruezabal RI, Peregrina A, Jofre E, Lloret J, Rivilla R, Toro N, Jimenez-Zurdo JI: The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol 2010, 10:71-90. BioMed Central Full Text
  • [17]Djordjevic MA: Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective. Proteomics 2004, 4:1859-1872.
  • [18]Barra-Bily L, Fontenelle C, Jan G, Flechard M, Trautwetter A, Pandey SP, Walker GC, Blanco C: Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol 2010, 192:1719-1729.
  • [19]Gao MS, Chen HC, Eberhard A, Gronquist MR, Robinson JB, Connolly M, Teplitski M, Rolfe BG, Bauer WD: Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Mol Plant Microbe Interact 2007, 20:843-856.
  • [20]Gao MS, Chen HC, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD: sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 2005, 187:7931-7944.
  • [21]Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, Gonzalez EM: Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol 2007, 144:1495-1507.
  • [22]Knief C, Delmotte N, Vorholt JA: Bacterial adaptation to life in association with plants - A proteomic perspective from culture to in situ conditions. Proteomics 2011, 11:3086-3105.
  • [23]Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H: Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact 2010, 23:784-790.
  • [24]Motokawa M, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Jinnai H, Hosoya K, Ikegami T, Tanaka N: Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J Chromatogr A 2002, 961:53-63.
  • [25]Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y: One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal Chem 2010, 82:2616-2620.
  • [26]Aoki W, Ueda T, Tatsukami Y, Kitahara N, Morisaka H, Kuroda K, Ueda M: Time-course proteomic profile of Candida albicans during adaptation to a fetal serum. Pathog Dis 2013, 67:67-75.
  • [27]Morisaka H, Matsui K, Tatsukami Y, Kuroda K, Miyake H, Tamaru Y, Ueda M: Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2012, 2:37-41. BioMed Central Full Text
  • [28]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17:458-466.
  • [29]Shingler V: Signal sensory systems that impact Sigma 54-dependent transcription. FEMS Microbiol Rev 2011, 35:425-440.
  • [30]McGarvey DJ, Croteau R: Terpenoid metabolism. Plant Cell 1995, 7:1015-1026.
  • [31]Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M: How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 2010, 51:1381-1397.
  • [32]Young KD: Bacterial shape. Mol Microbiol 2003, 49:571-580.
  • [33]Smit G, Kijne JW, Lugtenberg BJ: Roles of flagella, lipopolysaccharide, and a Ca2+−dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J Bacteriol 1989, 171:569-572.
  • [34]Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol 2002, 56:289-314.
  • [35]Beringer JE: R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974, 84:188-198.
  • [36]Kawaguchi M: Lotus japonicus 'Miyakojima' MG-20: An early-flowering accession suitable for indoor handling. J Plant Res 2000, 113:507-509.
  • [37]Becard G, Fortin JA: Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytolog 1988, 108:211-218.
  文献评价指标  
  下载次数:65次 浏览次数:26次