期刊论文详细信息
BMC Evolutionary Biology
The evolution of ultraconserved elements with different phylogenetic origins
Timothy Ravasi1  Loqmane Seridi1  Taewoo Ryu1 
[1] Department of Medicine, Division of Medical Genetics, University of California, San Diego, 9500 Gilman Drive La Jolla, CA, 92093-0688, USA
关键词: Marine biology;    Genome evolution;    Transcriptional regulatory networks;    Developmental enhancers;    Ultraconserved elements;   
Others  :  1139975
DOI  :  10.1186/1471-2148-12-236
 received in 2012-04-26, accepted in 2012-11-09,  发布年份 2012
PDF
【 摘 要 】

Background

Ultraconserved elements of DNA have been identified in vertebrate and invertebrate genomes. These elements have been found to have diverse functions, including enhancer activities in developmental processes. The evolutionary origins and functional roles of these elements in cellular systems, however, have not yet been determined.

Results

Here, we identified a wide range of ultraconserved elements common to distant species, from primitive aquatic organisms to terrestrial species with complicated body systems, including some novel elements conserved in fruit fly and human. In addition to a well-known association with developmental genes, these DNA elements have a strong association with genes implicated in essential cell functions, such as epigenetic regulation, apoptosis, detoxification, innate immunity, and sensory reception. Interestingly, we observed that ultraconserved elements clustered by sequence similarity. Furthermore, species composition and flanking genes of clusters showed lineage-specific patterns. Ultraconserved elements are highly enriched with binding sites to developmental transcription factors regardless of how they cluster.

Conclusion

We identified large numbers of ultraconserved elements across distant species. Specific classes of these conserved elements seem to have been generated before the divergence of taxa and fixed during the process of evolution. Our findings indicate that these ultraconserved elements are not the exclusive property of higher modern eukaryotes, but rather transmitted from their metazoan ancestors.

【 授权许可】

   
2012 Ryu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324031442858.pdf 1989KB PDF download
Figure 5. 48KB Image download
Figure 4. 38KB Image download
Figure 3. 83KB Image download
Figure 2. 78KB Image download
Figure 1. 10KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D: Ultraconserved elements in the human genome. Science (New York, NY) 2004, 304(5675):1321-1325.
  • [2]Ovcharenko I: Widespread ultraconservation divergence in primates. Mol Biol Evol 2008, 25(8):1668-1676.
  • [3]Glazov EA, Pheasant M, McGraw EA, Bejerano G, Mattick JS: Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Res 2005, 15(6):800-808.
  • [4]Zheng W-X, Zhang C-T: Ultraconserved elements between the genomes of the plants Arabidopsis thaliana and rice. J Biomol Struct Dyn 2008, 26:1-8.
  • [5]Papatsenko D, Kislyuk A, Levine M, Dubchak I: Conservation patterns in different functional sequence categories of divergent Drosophila species. Genomics 2006, 88(4):431-442.
  • [6]Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O'Brien G, Shiue L, Clark TA, Blume JE, Ares M: Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 2007, 21(6):708-718.
  • [7]Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE: Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007, 446(7138):926-929.
  • [8]Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, et al.: In vivo enhancer analysis of human conserved non-coding sequences. Nature 2006, 444(7118):499-502.
  • [9]Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, Plajzer-Frick I, Afzal V, Rubin EM, Pennacchio LA: Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet 2008, 40(2):158-160.
  • [10]Derti A, Roth FP, Church GM, Wu C: Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nat Genet 2006, 38:1216-1220.
  • [11]Yang R, Frank B, Hemminki K, Bartram CR, Wappenschmidt B, Sutter C, Kiechle M, Bugert P, Schmutzler RK, Arnold N, et al.: SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis 2008, 29(2):351-355.
  • [12]Poitras L, Yu M, Lesage-Pelletier C, Macdonald RB, Gagn J-P, Hatch G, Kelly I, Hamilton SP, Rubenstein JLR, Poirier GG, et al.: An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain. Development (Cambridge, England) 2010, 137(18):3089-3097.
  • [13]Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM: Deletion of ultraconserved elements yields viable mice. PLoS biology 2007, 5(9):e234-e234.
  • [14]Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D: A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006, 441(7089):87-90.
  • [15]Stephen S, Pheasant M, Makunin IV, Mattick JS: Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol Biol Evol 2008, 25(2):402-408.
  • [16]Katzman S, Kern AD, Bejerano G, Fewell G, Fulton L, Wilson RK, Salama SR, Haussler D: Human genome ultraconserved elements are ultraselected. Science (New York, NY) 2007, 317(5840):915-915.
  • [17]Lin Z, Ma H, Nei M: Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evol Biol 2008, 8:260-260. BioMed Central Full Text
  • [18]Sakuraba Y, Kimura T, Masuya H, Noguchi H, Sezutsu H, Takahasi KR, Toyoda A, Fukumura R, Murata T, Sakaki Y, et al.: Identification and characterization of new long conserved noncoding sequences in vertebrates. Mammalian genome: official journal of the International Mammalian Genome Society 2008, 19(10–12):703-712.
  • [19]Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics (Oxford, England) 2006, 22(23):2971-2972.
  • [20]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12-R12. BioMed Central Full Text
  • [21]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25-R25. BioMed Central Full Text
  • [22]UCSC Genome Browserhttp://genome.ucsc.edu/ webcite
  • [23]Kohany O, Gentles AJ, Hankus L, Jurka J: Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinforma 2006, 7:474-474. BioMed Central Full Text
  • [24]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [25]Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC: ltraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales. Syst Biol 2012.
  • [26]Halligan DL, Oliver F, Guthrie J, Stemshorn KC, Harr B, Keightley PD: Positive and negative selection in murine ultra-conserved noncoding elements. Mol Biol Evol 2011, 28(9):2651-2660.
  • [27]Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, Kashuk CS, Chakravarti A, Lupski JR, Cutler DJ, Katsanis N: Population bottlenecks as a potential major shaping force of human genome architecture. PLoS genetics 2007, 3(7):e119.
  • [28]Wang J, Lee AP, Kodzius R, Brenner S, Venkatesh B: Large number of ultraconserved elements were already present in the jawed vertebrate ancestor. Mol Biol Evol 2009, 26(3):487-490.
  • [29]Kim SY, Pritchard JK: Adaptive evolution of conserved noncoding elements in mammals. PLoS genetics 2007, 3(9):1572-1586.
  • [30]Cannistraci CV, Ravasi T, Montevecchi FM, Ideker T, Alessio M: Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes. Bioinformatics 2010, 26(18):i531-i539.
  • [31]Dubyak GR: Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv Physiol Educ 2004, 28(1–4):143-154.
  • [32]Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K-i, et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125(2):301-313.
  • [33]Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125(2):315-326.
  • [34]Ishii Y, Takeda S, Yamada H, Oguri K: Functional protein-protein interaction of drug metabolizing enzymes. Front Biosci 2005, 10:887-895.
  • [35]Chiang CWK, Derti A, Schwartz D, Chou MF, Hirschhorn JN, Wu C-T: Ultraconserved elements: analyses of dosage sensitivity, motifs and boundaries. Genetics 2008, 180:2277-2293.
  • [36]Lampe X, Samad OA, Guiguen A, Matis C, Remacle S, Picard JJ, Rijli FM, Rezsohazy R: An ultraconserved Hox-Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res 2008, 36(10):3214-3225.
  • [37]Rödelsperger C, Köhler S, Schulz MH, Manke T, Bauer S, Robinson PN: Short ultraconserved promoter regions delineate a class of preferentially expressed alternatively spliced transcripts. Genomics 2009, 94:308-316.
  • [38]Gogarten JP, Townsend JP: Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 2005, 3(9):679-687.
  • [39]McLean C, Bejerano G: Dispensability of mammalian DNA. Genome Res 2008, 18(11):1743-1751.
  • [40]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
  • [41]Gross L: Are "ultraconserved" genetic elements really indispensable? PLoS biology 2007, 5(9):e253-e253.
  • [42]Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, et al.: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466(7307):720-726.
  • [43]Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, et al.: The dynamic genome of Hydra. Nature 2010, 464(7288):592-596.
  • [44]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al.: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317(5834):86-94.
  • [45]Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, et al.: The genome of the sea urchin Strongylocentrotus purpuratus. Science (New York, NY) 2006, 314(5801):941-952.
  • [46]Roth AC, Gonnet GH, Dessimoz C: Algorithm of OMA for large-scale orthology inference. BMC Bioinforma 2008, 9:518. BioMed Central Full Text
  • [47]Dessimoz C, Boeckmann B, Roth AC, Gonnet GH: Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits. Nucleic Acids Res 2006, 34(11):3309-3316.
  • [48]Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2010, 38:196-203.
  • [49]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113-113. BioMed Central Full Text
  • [50]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [51]Ryu T, Mavromatis CH, Bayer T, Voolstra CR, Ravasi T: Unexpected complexity of the Reef-Building Coral Acropora millepora transcription factor network. BMC Syst Biol 2011, 5:58-58. BioMed Central Full Text
  • [52]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, et al.: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452(7188):745-749.
  • [53]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [54]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002, 30(7):1575-1584.
  • [55]Cannistraci CV, Lobato GA, Ravasi T: Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. submitted
  • [56]Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 2009, 37:32-36.
  • [57]Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [58]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [59]Charif D, Lobry JR: SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural Approaches to Sequence Evolution 2007, 1:207-232.
  • [60]Mahony S, Benos PV: STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 2007, 35:253-258.
  • [61]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.
  • [62]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
  • [63]Oosting J, Eilers P, Menezes R: Quantsmooth: Quantile smoothing and genomic visualization of array data. 2009.
  • [64]NCBI Genehttp://www.ncbi.nlm.nih.gov/gene/ webcite
  • [65]Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, et al.: GeneCards Version 3: the human gene integrator. Database (Oxford) 2010., 020
  文献评价指标  
  下载次数:31次 浏览次数:10次