期刊论文详细信息
BMC Medical Genomics
RNA sequencing reveals a depletion of collagen targeting microRNAs in Dupuytren’s disease
Sanjeev Kakar2  Andre J. van Wijnen2  Marianna Kruithof-de Julio3  Peter Kloen4  Marco Rizzo2  Jorge Torres-Mora1  Jared M. Evans5  Christopher R. Paradise2  Amel Dudakovic2  Emily T. Camilleri2  Diren Arsoy2  Scott M. Riester2 
[1] Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA;Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester 55905, MN, USA;Department of Urology, Leiden University Medical Center, Leiden, The Netherlands;Department of Orthopedic Surgery, Academic Medical Center, Amsterdam, The Netherlands;Department of Biomedical Statistics and Informatics, Mayo Clinic Rochester, Rochester, MN, USA
关键词: hand;    RNA sequencing;    fibrosis;    microRNA;    Dupuytren’s disease;   
Others  :  1233863
DOI  :  10.1186/s12920-015-0135-8
 received in 2015-06-18, accepted in 2015-09-20,  发布年份 2015
PDF
【 摘 要 】

Background

Dupuytren’s disease is an inherited disorder in which patients develop fibrotic contractures of the hand. Current treatment strategies include surgical excision or enzymatic digestion of fibrotic tissue. MicroRNAs, which are key posttranscriptional regulators of genes expression, have been shown to play an important regulatory role in disorders of fibrosis. Therefore in this investigation, we apply high throughput next generation RNA sequencing strategies to characterize microRNA expression in diseased and healthy palmar fascia to elucidate molecular mechanisms responsible for pathogenic fibrosis.

Methods

We applied high throughput RNA sequencing techniques to quantify the expression of all known human microRNAs in Dupuytren’s and control palmar fascia. MicroRNAs that were differentially expressed between diseased and healthy tissue samples were used for computational target prediction using the bioinformatics tool ComiR. Molecular pathways that were predicted to be differentially expressed based on computational analysis were validated by performing RT-qPCR on RNA extracted from diseased and non-diseased palmar fascia biopsies.

Results

A comparison of microRNAs expressed in Dupuytren’s fascia and control fascia identified 74 microRNAs with a 2-fold enrichment in Dupuytren’s tissue, and 32 microRNAs with enrichment in control fascia. Computational target prediction for differentially expressed microRNAs indicated preferential targeting of collagens and extracellular matrix related proteins in control palmar fascia. RT-qPCR confirmed the decreased expression of microRNA targeted collagens in control palmar fascia tissues.

Discussion

Control palmar fascia show decreased expression of mRNAs encoding collagens that are preferentially targeted by microRNAs enriched in non-diseased fascia. Thus alterations in microRNA regulatory networks may play an important role in driving the pathogenic fibrosis seen in Dupuytren’s disease via direct regulatory effects on extracellular matrix protein synthesis.

Conclusion

Dupuytren’s fascia and healthy palmar fascia can be distinguished by unique microRNA profiles, which are predicted to preferentially target collagens and other extracellular matrix proteins.

【 授权许可】

   
2015 Riester et al.

【 预 览 】
附件列表
Files Size Format View
20151123051354137.pdf 2871KB PDF download
Fig. 8. 64KB Image download
Fig. 3. 29KB Image download
Fig. 6. 102KB Image download
Fig. 5. 60KB Image download
Fig. 4. 22KB Image download
Fig. 3. 47KB Image download
Fig. 2. 179KB Image download
Fig. 1. 49KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 3.

Fig. 8.

【 参考文献 】
  • [1]Armstrong JR, Hurren JS, Logan AM: Dermofasciectomy in the management of Dupuytren’s disease. J Bone Joint Surg Br. 2000, 82:90-94.
  • [2]Coert JH, Barret JP, Meek MF: Results of Partial Fasciectomy for Dupuytren Disease in 261 Consecutive Patients. Ann Plast Surg. 2006, 57:13-17.
  • [3]Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FT, Meals RA, Smith TM, Rodzilla J: CORD I Study Group: Injectable collagenase clostridium histolyticum for Dupuytren’s contracture. N Engl J Med 2009, 361:968-979.
  • [4]Mavrogenis AF, Spyridonos SG, Ignatiadis IA, Antonopoulos D, Papagelopoulos PJ: Partial fasciectomy for Dupuytren’s contractures. J Surg Orthop Adv. 2009, 18:106-110.
  • [5]Riester SM, van Wijnen AJ, Rizzo M, Kakar S: Pathogenesis and Treatment of Dupuytren Disease. JBJS Reviews 2014, 2:e2.
  • [6]Hindocha S, McGrouther DA, Bayat A: Epidemiological evaluation of Dupuytren’s disease incidence and prevalence rates in relation to etiology. Hand (NY) 2009, 4:256-269.
  • [7]Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al.: Wnt Signaling in Dupuytren's Disease. N Engl J Med. 2011, 365:307-17.
  • [8]Anderson ER, Burmester JK, Caldwell MD: Evaluation of a mitochondrial DNA mutation in maternally inherited and sporadic cases of Dupuytren disease. Clin Med Res. 2012, 10:122-126.
  • [9]Hu FZ, Nystrom A, Ahmed A, Palmquist M, Dopico R, Mossberg I, Gladitz J, Rayner M, Post JC, Ehrlich GD, Preston RA: Mapping of an autosomal dominant gene for Dupuytren’s contracture to chromosome 16q in a Swedish family. Clin Genet. 2005, 68:424-429.
  • [10]Zeng C, Wang YL, Xie C, Sang Y, Li TJ, Zhang M, Wang R, Zhang Q, Zheng L, Zhuang SM. Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget. 2015. [Epub ahead of print].
  • [11]Gras C, Ratuszny D, Hadamitzky C, Zhang H, Blasczyk R, Figueiredo C. miR-145 contributes to hypertrophic scarring of the skin by inducing myofibroblast activity. Mol Med. 2015. [Epub ahead of print].
  • [12]Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E: MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med. 2014, 6:1347-56.
  • [13]Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y: MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012, 8:212-27.
  • [14]M. Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, North America, 17, May 2011. Available at:. http://journal.embnet.org/index.php/embnetjournal/article/view/200 webcite
  • [15]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10:R25. BioMed Central Full Text
  • [16]Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008, 26:407-15.
  • [17]Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, Kocher JP: CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics. 2014, 15:423. BioMed Central Full Text
  • [18]Coronnello C, Hartmaier R, Arora A, Huleihel L, Pandit KV, Bais AS, Butterworth M, Kaminski N, Stormo GD, Oesterreich S, Benos PV: Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density. PLoS Comput Biol. 2012., 8Article ID e1002830
  • [19]Coronnello C, Benos PV: ComiR: Combinatorial microRNA target prediction tool. Nucleic Acids Res 2013, 41(Web Server issue):W159-64.
  • [20]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4:44-57.
  • [21]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37:1-13.
  • [22]Dudakovic A, Camilleri E, Riester SM, Lewallen EA, Kvasha S, Chen X, Radel DJ, Anderson JM, Nair AA, Evans JM, Krych AJ, Smith J, Deyle DR, Stein JL, Stein GS, Im HJ, Cool SM, Westendorf JJ, Kakar S, Dietz AB, van Wijnen AJ: High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J Cell Biochem. 2014, 115:1816-28.
  • [23]Park JT, Kato M, Lanting L, Castro N, Nam BY, Wang M, Kang SW, Natarajan R: Repression of let-7 by transforming growth factor-β1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol. 2014, 307:F1390-403.
  • [24]Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T, Honda N, Kajihara I, Makino T, Sakai K, Masuguchi S, Fukushima S, Ihn H: The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol. 2013, 190:3905-15.
  • [25]Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N: Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010, 182:220-9.
  • [26]Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009, 284:15676-84.
  • [27]Tu X, Zheng X, Li H, Cao Z, Chang H, Luan S, Zhu J, Chen J, Zang Y, Zhang J. MicroRNA-30 Protects Against Carbon Tetrachloride-induced Liver Fibrosis by Attenuating Transforming Growth Factor Beta Signaling in Hepatic Stellate Cells. Toxicol Sci. 2015. [Epub ahead of print].
  • [28]Zhou Q, Yang M, Lan H, Yu X: miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol 2013, 183:808-19.
  • [29]Graham JR, Williams CM, Yang Z: MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem. 2014, 115:1539-48.
  • [30]Kwan P, Ding J, Tredget EE: MicroRNA 181b Regulates Decorin Production by Dermal Fibroblasts and May Be a Potential Therapy for Hypertrophic Scar. PloS One. 2015., 10Article ID e0123054
  • [31]Li C, Zhu HY, Bai WD, Su LL, Liu JQ, Cai WX, Zhao B, Gao JX, Han SC, Li J, Hu DH: MiR-10a and miR-181c regulate collagen type I generation in hypertrophic scars by targeting PAI-1 and uPA. FEBS Lett. 2015, 589:380-9.
  • [32]Li X, Liu L, Shen Y, Wang T, Chen L, Xu D, Wen F: MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun 2014, 454:512-517.
  • [33]Liang H, Gu Y, Li T, Zhang Y, Huangfu L, Hu M, Zhao D, Chen Y, Liu S, Dong Y, Li X, Lu Y, Yang B, Shan H: Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death Dis. 2014., 5Article ID e1238
  • [34]Liang H, Xu C, Pan Z, Zhang Y, Xu Z, Chen Y, Li T, Li X, Liu Y, Huangfu L, Lu Y, Zhang Z, Yang B, Gitau S, Lu Y, Shan H, Du Z: The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther. 2014, 22:1122-33.
  • [35]Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S: NF-κB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013, 228:1433-42.
  • [36]Zhao S, Zhang Y, Zheng X, Tu X, Li H, Chen J, Zang Y, Zhang J. Loss of microRNA-101 Promotes Epithelial to Mesenchymal Transition in Hepatocytes. J Cell Physiol. 2015. [Epub ahead of print].
  • [37]Zhao X, Wang K, Liao Y, Zeng Q, Li Y, Hu F, Liu Y, Meng K, Qian C, Zhang Q, Guan H, Feng K, Zhou Y, Du Y, Chen Z: MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFβRI on cardiac fibroblasts. Cell Physiol Biochem. 2015, 35:213-26.
  • [38]Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z, Zhu J, Chen J, Dong L, Zang Y, Zhang J: MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. J Pathol. 2014, 234:46-59.
  • [39]Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B: MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation. 2012, 126:840-50.
  • [40]Han X, Yan S, Weijie Z, Feng W, Liuxing W, Mengquan L, Qingxia F: Critical role of miR-10b in transforming growth factor-β1-induced epithelial-mesenchymal transition in breast cancer. Cancer Gene Ther. 2014, 21:60-7.
  • [41]Zhao C, Li Y, Zhang M, Yang Y, Chang L: miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum Cell 2015, 28:91-9.
  • [42]Jiang L, He A, Zhang Q, Tao C: miR-126 inhibits cell growth, invasion, and migration of osteosarcoma cells by downregulating ADAM-9. Tumour Biol 2014, 35:12645-54.
  • [43]Yang C, Hou C, Zhang H, Wang D, Ma Y, Zhang Y, Xu X, Bi Z, Geng S: miR-126 functions as a tumor suppressor in osteosarcoma by targeting Sox2. Int J Mol Sci 2013, 15:423-37.
  • [44]Yu Q, Liu SL, Wang H, Shi G, Yang P, Chen XL: miR-126 Suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pac J Cancer Prev 2014, 14:6569-72.
  • [45]Zhou Y, Feng X, Liu YL, Ye SC, Wang H, Tan WK, Tian T, Qiu YM, Luo HS: Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways. PLoS One. 2013., 8Article ID e81203
  • [46]Guo CJ, Pan Q, Xiong H, Qiao YQ, Bian ZL, Zhong W, Sheng L, Li H, Shen L, Hua J, Ma X, Fang JY: Dynamic expression of miR-126* and its effects on proliferation and contraction of hepatic stellate cells. FEBS Lett. 2013, 587:3792-801.
  • [47]Li N, Tang A, Huang S, Li Z, Li X, Shen S, Ma J, Wang X: MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol Cell Biochem. 2013, 380:107-19.
  • [48]Feng Y, Kang Y, He Y, Liu J, Liang B, Yang P, Yu Z: microRNA-99a acts as a tumor suppressor and is down-regulated in bladder cancer. BMC Urol 2014, 14:50. BioMed Central Full Text
  • [49]Song Y, Dou H, Wang P, Zhao S, Wang T, Gong W, Zhao J, Li E, Tan R, Hou Y: A novel small-molecule compound diaporine A inhibits non-small cell lung cancer growth by regulating miR-99a/mTOR signaling. Cancer Biol Ther. 2014, 15:1423-30.
  • [50]Wu D, Zhou Y, Pan H, Zhou J, Fan Y, Qu P: microRNA-99a inhibiting cell proliferation, migration and invasion by targeting fibroblast growth factor receptor 3 in bladder cancer. Oncol Lett 2014, 7:1219-1224.
  • [51]Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen J: Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014, 5:2276-92.
  • [52]Wang L, Chang L, Li Z, Gao Q, Cai D, Tian Y, Zeng L, Li M: miR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Med Oncol 2014, 31:934.
  • [53]Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, Dai Y, Marucha PT, Zhou X: MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One. 2013., 8Article ID e64434
  • [54]Cui L, Zhou H, Zhao H, Zhou Y, Xu R, Xu X, Zheng L, Xue Z, Xia W, Zhang B, Ding T, Cao Y, Tian Z, Shi Q, He X: MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer. 2012, 12:546. BioMed Central Full Text
  • [55]Tiwari A, Shivananda S, Gopinath KS, Kumar A: MicroRNA-125a reduces proliferation and invasion of oral squamous cell carcinoma cells by targeting estrogen-related receptor α: implications for cancer therapeutics. J Biol Chem. 2014, 289:32276-90.
  • [56]Ufkin ML, Peterson S, Yang X, Driscoll H, Duarte C, Sathyanarayana P: miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk Res 2014, 38:402-10.
  • [57]Ninio-Many L, Grossman H, Shomron N, Chuderland D, Shalgi R: microRNA-125a-3p reduces cell proliferation and migration by targeting Fyn. J Cell Sci 2013, 126:2867-76.
  • [58]Bi Q, Tang S, Xia L, Du R, Fan R, Gao L, Jin J, Liang S, Chen Z, Xu G, Nie Y, Wu K, Liu J, Shi Y, Ding J, Fan D: Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One. 2012., 7Article ID e40169
  • [59]Zhang Y, Gao JS, Tang X, Tucker LD, Quesenberry P, Rigoutsos I, Ramratnam B: MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett. 2009, 583:3725-30.
  • [60]Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, Wang K, Zheng S, Ng SS, Chan FK, Sung JJ, Yu J: microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer 2014, 13:124. BioMed Central Full Text
  • [61]Luo HN, Wang ZH, Sheng Y, Zhang Q, Yan J, Hou J, Zhu K, Cheng Y, Xu YL, Zhang XH, Xu M, Ren XY: MiR-139 targets CXCR4 and inhibits the proliferation and metastasis of laryngeal squamous carcinoma cells. Med Oncol. 2014, 31:789.
  • [62]Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, Yin L, Kim SJ: Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One. 2013., 8Article ID e77068
  • [63]Shi C, Yang Y, Xia Y, Okugawa Y, Yang J, Liang Y, Chen H, Zhang P, Wang F, Han H, Wu W, Gao R, Gasche C, Qin H, Ma Y, Goel A. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut. 2015. pii:gutjnl-2014-308455. doi:10.1136/gutjnl-2014-308455.
  • [64]Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y, Xu-Monette ZY, Young KH, Xiong W, Wysoczynski M, Sithu SD, Srivastava S, Bhatnagar A, Li Y: The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun. 2015, 6:7151.
  • [65]Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, Paulus E, Davidoff AM, Pfeffer LM: The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015, 290:6037-46.
  • [66]Zuo J, Wen M, Lei M, Peng X, Yang X, Liu Z: MiR-210 Links Hypoxia With Cell Proliferation Regulation in Human Laryngocarcinoma Cancer. J Cell Biochem. 2015, 116:1039-49.
  • [67]Bodempudi V, Hergert P, Smith K, Xia H, Herrera J, Peterson M, Khalil W, Kahm J, Bitterman PB, Henke CA: miR-210 promotes IPF fibroblast proliferation in response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2014, 307:L283-94.
  • [68]Wang C, Song X, Li Y, Han F, Gao S, Wang X, Xie S, Lv C: Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation. PLoS One. 2013., 8Article ID e70725
  • [69]Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S: Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009, 583:759-66.
  • [70]Zheng J, Wu C, Xu Z, Xia P, Dong P, Chen B, Yu F: Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem. 2015, 398:1-9.
  • [71]Brockhausen J, Tay SS, Grzelak CA, Bertolino P, Bowen DG, d’Avigdor WM, Teoh N, Pok S, Shackel N, Gamble JR, Vadas M, McCaughan GW: miR-181a mediates TGF-β-induced hepatocyte EMT and is dysregulated in cirrhosis and hepatocellular cancer. Liver Int 2015, 35:240-53.
  • [72]Chen C, Wu CQ, Zhang ZQ, Yao DK, Zhu L: Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res. 2011, 317:1714-25.
  • [73]Ameres SL, Martinez J, Schroeder R: Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130:101-112.
  • [74]Krause C, Kloen P, Ten Dijke P: Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis Tissue Repair. 2011, 4:14. BioMed Central Full Text
  • [75]Kloen P, Jennings CL, Gebhardt MC, Springfield DS, Mankin HJ: Transforming growth factor-beta: possible roles in Dupuytren’s contracture. J Hand Surg Am 1995, 20:101-8.
  • [76]Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, Krill-Burger JM, Gallo PH, O’Gorman DB, Gan BS, Baratz ME, Ehrlich GD, Kathju S: Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med Genomics. 2012, 5:15. BioMed Central Full Text
  • [77]Mosakhani N, Guled M, Lahti L, Borze I, Forsman M, Pääkkönen V, Ryhänen J, Knuutila S: Unique microRNA profile in Dupuytren’s contracture supports deregulation of β-catenin pathway. Mod Pathol. 2010, 23:1544-52.
  • [78]Liu S, Lin L, Jiang P, Wang D, Xing Y: A comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. Nucleic Acids Res. 2011, 39:578-88.
  文献评价指标  
  下载次数:31次 浏览次数:27次