期刊论文详细信息
BMC Evolutionary Biology
The origins of the evolutionary signal used to predict protein-protein interactions
Simon C Lovell1  David L Robertson1  Narayanaswamy Srinivasan2  Lakshmipuram S Swapna2 
[1]Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
[2]Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
关键词: Protein-protein interactions;    Protein-protein complexes;    Phylogenetic;    Protein evolution;    Correlated evolution;    Co-evolution;   
Others  :  1139973
DOI  :  10.1186/1471-2148-12-238
 received in 2011-11-08, accepted in 2012-11-17,  发布年份 2012
PDF
【 摘 要 】

Background

The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis.

Results

In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence.

Conclusions

Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.

【 授权许可】

   
2012 Swapna et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324031230283.pdf 599KB PDF download
Figure 6. 95KB Image download
Figure 5. 31KB Image download
Figure 4. 44KB Image download
Figure 3. 13KB Image download
Figure 2. 31KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Golemis E: Protein-protein interactions: A molecular cloning manual. New York: Cold Spring Harbor Laboratory Press; 2002.
  • [2]Levy ED, Pereira-Leal JB: Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 2008, 18(3):349-357.
  • [3]Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G: The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 2007, 17(1):67-76.
  • [4]Schreiber G, Keating AE: Protein binding specificity versus promiscuity. Curr Opin Struct Biol 2011, 21(1):50-61.
  • [5]Vidal M, Cusick ME, Barabasi AL: Interactome networks and human disease. Cell 2011, 144(6):986-998.
  • [6]Grigoriev A: On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res 2003, 31(14):4157-4161.
  • [7]Drewes G, Bouwmeester T: Global approaches to protein-protein interactions. Curr Opin Cell Biol 2003, 15(2):199-205.
  • [8]Piehler J: New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 2005, 15(1):4-14.
  • [9]Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440(7084):631-636.
  • [10]Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440(7084):637-643.
  • [11]Phizicky EM, Fields S: Protein-protein interactions: methods for detection and analysis. Microbiol Rev 1995, 59(1):94-123.
  • [12]Lakey JH, Raggett EM: Measuring protein-protein interactions. Curr Opin Struct Biol 1998, 8(1):119-123.
  • [13]Salwinski L, Eisenberg D: Computational methods of analysis of protein-protein interactions. Curr Opin Struct Biol 2003, 13(3):377-382.
  • [14]Lewis AC, Saeed R, Deane CM: Predicting protein-protein interactions in the context of protein evolution. Mol Biosyst 2010, 6(1):55-64.
  • [15]Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D: Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285(5428):751-753.
  • [16]Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA: Protein interaction maps for complete genomes based on gene fusion events. Nature 1999, 402(6757):86-90.
  • [17]Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999, 96(6):2896-2901.
  • [18]Huynen M, Snel B, Lathe W 3rd, Bork P: Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 2000, 10(8):1204-1210.
  • [19]Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96(8):4285-4288.
  • [20]Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M: Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". Genome Res 2001, 11(12):2120-2126.
  • [21]Pazos F, Valencia A: Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 2001, 14(9):609-614.
  • [22]Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE: Co-evolution of proteins with their interaction partners. J Mol Biol 2000, 299(2):283-293.
  • [23]Fryxell KJ: The coevolution of gene family trees. Trends Genet 1996, 12(9):364-369.
  • [24]Kann MG, Jothi R, Cherukuri PF, Przytycka TM: Predicting protein domain interactions from coevolution of conserved regions. Proteins 2007, 67(4):811-820.
  • [25]Pazos F, Ranea JA, Juan D, Sternberg MJ: Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 2005, 352(4):1002-1015.
  • [26]Sato T, Yamanishi Y, Kanehisa M, Toh H: The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005, 21(17):3482-3489.
  • [27]Craig RA, Liao L: Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics 2007, 8:6. BioMed Central Full Text
  • [28]Juan D, Pazos F, Valencia A: High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci U S A 2008, 105(3):934-939.
  • [29]Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM: Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009, 385(1):91-98.
  • [30]Lovell SC, Robertson DL: An integrated view of molecular coevolution in protein-protein interactions. Mol Biol Evol 2010, 27(11):2567-2575.
  • [31]Hakes L, Lovell SC, Oliver SG, Robertson DL: Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci U S A 2007, 104(19):7999-8004.
  • [32]Pazos F, Valencia A: Protein co-evolution, co-adaptation and interactions. Embo J 2008, 27(20):2648-2655.
  • [33]Kelly WP, Stumpf MP: Trees on networks: resolving statistical patterns of phylogenetic similarities among interacting proteins. BMC Bioinformatics 2010, 11:470. BioMed Central Full Text
  • [34]Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y, Wang X: Co-evolution of ligand-receptor pairs. Nature 1994, 368(6468):251-255.
  • [35]Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW: Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 2000, 17(1):164-178.
  • [36]Mintseris J, Weng Z: Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci U S A 2005, 102(31):10930-10935.
  • [37]Travers SA, Fares MA: Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol Biol Evol 2007, 24(4):1032-1044.
  • [38]Madaoui H, Guerois R: Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking. Proc Natl Acad Sci U S A 2008, 105(22):7708-7713.
  • [39]Yeang CH, Haussler D: Detecting coevolution in and among protein domains. PLoS Comput Biol 2007, 3(11):e211.
  • [40]Pal C, Papp B, Lercher MJ: An integrated view of protein evolution. Nat Rev Genet 2006, 7(5):337-348.
  • [41]Jothi R, Cherukuri PF, Tasneem A, Przytycka TM: Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 2006, 362(4):861-875.
  • [42]Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981, 17(6):368-376.
  • [43]Huelsenbeck JP, Crandall KA: Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst 1997, 28:437-466.
  • [44]Maddison WP: Gene trees in species trees. Syst Biol 1997, 46(3):523-536.
  • [45]Castresana J: Topological variation in single-gene phylogenetic trees. Genome Biol 2007, 8(6):216.
  • [46]Rannala B, Yang Z: Phylogenetic inference using whole genomes. Annu Rev Genomics Hum Genet 2008, 9:217-231.
  • [47]Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, et al.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31(1):365-370.
  • [48]Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 2004, 32(Database issue):D115-D119.
  • [49]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [50]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, et al.: The Pfam protein families database. Nucleic Acids Res 2008, 36(Database issue):D281-D288.
  • [51]Pybus OG: Model selection and the molecular clock. PLoS Biol 2006, 4(5):e151.
  • [52]Strimmer K, Rambaut A: Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci 2002, 269(1487):137-142.
  • [53]Goldman N, Anderson JP, Rodrigo AG: Likelihood-based tests of topologies in phylogenetics. Syst Biol 2000, 49(4):652-670.
  • [54]Thompson JD, Linard B, Lecompte O, Poch O: A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 2011, 6(3):e18093.
  • [55]Barta JR: Investigating phylogenetic relationships within the Apicomplexa using sequence data: the search for homology. Methods 1997, 13(2):81-88.
  • [56]Hillis DM, Dixon MT: Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 1991, 66(4):411-453.
  • [57]Margoliash E: Primary structure and evolution of cytochrome C. Proc Natl Acad Sci U S A 1963, 50:672-679.
  • [58]Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward automatic reconstruction of a highly resolved tree of life. Science 2006, 311(5765):1283-1287.
  • [59]Thompson JN: The coevolutionary process. Chicago: University of Chicago Press; 1994.
  • [60]Agrafioti I, Swire J, Abbott J, Huntley D, Butcher S, Stumpf MP: Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks. BMC Evol Biol 2005, 5:23. BioMed Central Full Text
  • [61]Wang GZ, Lercher MJ: The effects of network neighbours on protein evolution. PLoS One 2011, 6(4):e18288.
  • [62]Williams SG, Lovell SC: The effect of sequence evolution on protein structural divergence. Mol Biol Evol 2009, 26(5):1055-1065.
  • [63]Tillier ER, Charlebois RL: The human protein coevolution network. Genome Res 2009, 19(10):1861-1871.
  • [64]Atwell S, Ultsch M, De Vos AM, Wells JA: Structural plasticity in a remodeled protein-protein interface. Science 1997, 278(5340):1125-1128.
  • [65]Mateu MG, Fersht AR: Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci U S A 1999, 96(7):3595-3599.
  • [66]del Alamo M, Mateu MG: Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J Mol Biol 2005, 345(4):893-906.
  • [67]Clark GW, Dar VU, Bezginov A, Yang JM, Charlebois RL, Tillier ER: Using coevolution to predict protein-protein interactions. Methods Mol Biol 2011, 781:237-256.
  • [68]Tan SH, Zhang Z, Ng SK: ADVICE: Automated Detection and Validation of Interaction by Co-Evolution. Nucleic Acids Res 2004, 32(Web Server issue):W69-W72.
  • [69]von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417(6887):399-403.
  • [70]Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature 2003, 425(6959):737-741.
  • [71]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [72]Baldauf SL: Phylogeny for the faint of heart: a tutorial. Trends Genet 2003, 19(6):345-351.
  • [73]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [74]Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 1996, 11(9):367-372.
  • [75]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25(7):1307-1320.
  • [76]Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18(3):502-504.
  • [77]Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, et al.: The European nucleotide archive. Nucleic Acids Res 2010, 39(Database issue):D28-D31.
  文献评价指标  
  下载次数:17次 浏览次数:12次