期刊论文详细信息
BMC Genomics
Retinal transcriptome profiling at transcription start sites: a cap analysis of gene expression early after axonal injury
Toru Nakazawa2  Kazuichi Maruyama1  Satoru Tsuda1  Morin Ryu1  Koji M Nishiguchi2  Yuji Tanaka1  Masayuki Yasuda1 
[1] Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan;Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
关键词: RGC;    Retinal ganglion cells;    Optic nerve crush;    Axonal injury;    Transcriptome;    Transcription start sites;    Cap analysis of gene expression;    CAGE;   
Others  :  1092400
DOI  :  10.1186/1471-2164-15-982
 received in 2014-05-28, accepted in 2014-09-23,  发布年份 2014
PDF
【 摘 要 】

Background

Glaucoma is characterized by progressive loss of the visual field and death of retinal ganglion cells (RGCs), a process that is mediated, in part, by axonal injury. However, the molecular pathomechanisms linking RGC death and axonal injury remain largely unknown. Here, we examined these mechanisms with a cap analysis of gene expression (CAGE), which allows the comprehensive quantification of transcription initiation across the entire genome. We aimed to identify changes in gene expression patterns and to predict the resulting alterations in the protein network in the early phases of axonal injury in mice.

Results

We performed optic nerve crush (ONC) in mice to model axonal injury. Two days after ONC, the retinas were isolated, RNA was extracted, and a CAGE library was constructed and sequenced. CAGE data for ONC eyes and sham-treated eyes was compared, revealing 180 differentially expressed genes. Among them, the Bcat1 gene, involved in the catabolism of branched-chain amino acid transaminase, showed the largest change in expression (log2 fold-change = 6.70). In some differentially expressed genes, alternative transcription start sites were observed in the ONC eyes, highlighting the dynamism of transcription initiation in a state of disease. In silico pathway analysis predicted that ATF4 was the most significant upstream regulator orchestrating pathological processes after ONC. Its downstream candidate targets included Ddit3, which is known to induce cell death under endoplasmic reticulum stress. In addition, a regulatory network comprising IFNG, P38 MAPK, and TP53 was predicted to be involved in the induction of cell death.

Conclusion

Through CAGE, we have identified differentially expressed genes that may account for the link between axonal injury and RGC death. Furthermore, an in silico pathway analysis provided a global view of alterations in the networks of key regulators of biological pathways that presumably take place in ONC. We thus believe that our study serves as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death.

【 授权许可】

   
2014 Yasuda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128183606771.pdf 1810KB PDF download
Figure 4. 107KB Image download
Figure 3. 100KB Image download
Figure 2. 59KB Image download
Figure 1. 127KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Quigley HA, Broman AT: The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006, 90:262-267.
  • [2]Pederson JE, Anderson DR: The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol 1980, 98:490-495.
  • [3]Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M: Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002, 120:1268-1279.
  • [4]Collaborative Normal-Tension Glaucoma Study Group: The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 1998, 126:498-505.
  • [5]Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D, Sharma S: Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA 2013, 309:2035-2042.
  • [6]Gugleta K, Turksever C, Polunina A, Orgul S: Effect of ageing on the retinal vascular responsiveness to flicker light in glaucoma patients and in ocular hypertension. Br J Ophthalmol 2013, 97:848-851.
  • [7]Burgoyne CF: A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 2011, 93:120-132.
  • [8]Whitmore AV, Libby RT, John SW: Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005, 24:639-662.
  • [9]Park HY, Jeon SH, Park CK: Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology 2012, 119:10-20.
  • [10]Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, Liebmann JM, Ritch R: Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci 2013, 54:8401-8407.
  • [11]Tatham AJ, Miki A, Weinreb RN, Zangwill LM, Medeiros FA: Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology 2014, 121:110-118.
  • [12]Morgan JE: Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond) 2000, 14(Pt 3B):437-444.
  • [13]Quigley HA, Addicks EM, Green WR, Maumenee AE: Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981, 99:635-649.
  • [14]Dolman CL, McCormick AQ, Drance SM: Aging of the optic nerve. Arch Ophthalmol 1980, 98:2053-2058.
  • [15]Grossniklaus HE, Nickerson JM, Edelhauser HF, Bergman LA, Berglin L: Anatomic alterations in aging and age-related diseases of the eye. Invest Ophthalmol Vis Sci 2013, 54:ORSF23-ORSF27.
  • [16]Albon J, Purslow PP, Karwatowski WS, Easty DL: Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 2000, 84:318-323.
  • [17]Kotecha A, Izadi S, Jeffery G: Age-related changes in the thickness of the human lamina cribrosa. Br J Ophthalmol 2006, 90:1531-1534.
  • [18]Orgul S, Cioffi GA, Wilson DJ, Bacon DR, Van Buskirk EM: An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 1996, 37:1860-1869.
  • [19]Balaratnasingam C, Morgan WH, Bass L, Kang M, Cringle SJ, Yu DY: Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Invest Ophthalmol Vis Sci 2010, 51:3019-3028.
  • [20]Rieck J: The pathogenesis of glaucoma in the interplay with the immune system. Invest Ophthalmol Vis Sci 2013, 54:2393-2409.
  • [21]Tezel G: The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res 2011, 93:178-186.
  • [22]Tezel G: Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006, 25:490-513.
  • [23]Noh YH, Kim KY, Shim MS, Choi SH, Choi S, Ellisman MH, Weinreb RN, Perkins GA, Ju WK: Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis 2013, 4:e820.
  • [24]Weinreb RN, Friedman DS, Fechtner RD, Cioffi GA, Coleman AL, Girkin CA, Liebmann JM, Singh K, Wilson MR, Wilson R, Kannel WB: Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol 2004, 138:458-467.
  • [25]Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T: Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 2012, 90:802-815.
  • [26]Fischer D, Petkova V, Thanos S, Benowitz LI: Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 2004, 24:8726-8740.
  • [27]Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, Modrusan Z, Kaminker JS, Tessier-Lavigne M, Lewcock JW: DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A 2013, 110:4039-4044.
  • [28]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [29]Yasuda M, Tanaka Y, Ryu M, Tsuda S, Nakazawa T: RNA sequence reveals mouse retinal transcriptome changes early after axonal injury. PLoS One 2014, 9:e93258.
  • [30]Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y: Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 2003, 100:15776-15781.
  • [31]de Hoon M, Hayashizaki Y: Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 2008, 44:627-628. 630, 632
  • [32]Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, Yu C, Booth BW, Zhang D, Wan KH, Yang L, Boley N, Andrews J, Kaufman TC, Graveley BR, Bickel PJ, Carninci P, Carlson JW, Celniker SE: Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res 2011, 21:182-192.
  • [33]Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
  • [34]Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
  • [35]Allcutt D, Berry M, Sievers J: A qualitative comparison of the reactions of retinal ganglion cell axons to optic nerve crush in neonatal and adult mice. Brain Res 1984, 318:231-240.
  • [36]Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, Bertin N, Kaiho A, Ninomiya N, Daub CO, Carninci P, Forrest AR, Hayashizaki Y: Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res 2011, 21:1150-1159.
  • [37]Takahashi H, Lassmann T, Murata M, Carninci P: 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 2012, 7:542-561.
  • [38]Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M: Detecting expressed genes using CAGE. Methods Mol Biol 2014, 1164:67-85.
  • [39]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [40]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [41]Lassmann T, Hayashizaki Y, Daub CO: SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 2011, 27:130-131.
  • [42]Ohmiya H, Vitezic M, Frith MC, Itoh M, Carninci P, Forrest AR, Hayashizaki Y, Lassmann T: RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genomics 2014, 15:269. BioMed Central Full Text
  • [43]Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A: A code for transcription initiation in mammalian genomes. Genome Res 2008, 18:1-12.
  • [44]Li Q, Brown JB, Huang H, Bickel PJ: Measuring reproducibility of high-throughput experiments. Annals Appl Stat 2011, 5:1752-1779.
  • [45]Ruzzo WL, Tompa M: A linear time algorithm for finding all maximal scoring subsequences. Proc Int Conf Intell Syst Mol Biol 1999, 7:234-241.
  • [46]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
  • [47]Shi J, Yang W, Chen M, Du Y, Zhang J, Wang K: AMD, an automated motif discovery tool using stepwise refinement of gapped consensuses. PLoS One 2011, 6:e24576.
  • [48]Frith MC, Saunders NF, Kobe B, Bailey TL: Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 2008, 4:e1000071.
  • [49]Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 2004, 32:W199-W203.
  • [50]Bailey TL: DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011, 27:1653-1659.
  • [51]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-W208.
  • [52]Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW: JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 2014, 42:D142-D147.
  • [53]Shanab AY, Nakazawa T, Ryu M, Tanaka Y, Himori N, Taguchi K, Yasuda M, Watanabe R, Takano J, Saido T, Minegishi N, Miyata T, Abe T, Yamamoto M: Metabolic stress response implicated in diabetic retinopathy: the role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 2012, 48:556-567.
  • [54]Prat-Vidal C, Galvez-Monton C, Nonell L, Puigdecanet E, Astier L, Sole F, Bayes-Genis A: Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in swine. PLoS One 2013, 8:e54785.
  • [55]Saili KS, Tilton SC, Waters KM, Tanguay RL: Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17beta-estradiol in embryonic zebrafish. Reprod Toxicol 2013, 38:89-101.
  • [56]Cassone CG, Taylor JJ, O’Brien JM, Williams A, Yauk CL, Crump D, Kennedy SW: Transcriptional profiles in the cerebral hemisphere of chicken embryos following in ovo perfluorohexane sulfonate exposure. Toxicol Sci 2012, 129:380-391.
  • [57]R Core Team: R: A Language and Environment for Statistical Computing. Austria: R Foundation for Statistical Computing V; Available: http://www.R-project.org webcite
  • [58]Kawaji H, Lizio M, Itoh M, Kanamori-Katayama M, Kaiho A, Nishiyori-Sueki H, Shin JW, Kojima-Ishiyama M, Kawano M, Murata M, Ninomiya-Fukuda N, Ishikawa-Kato S, Nagao-Sato S, Noma S, Hayashizaki Y, Forrest AR, Carninci P: Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res 2014, 24:708-717.
  • [59]Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, Roska B: Transcriptional code and disease map for adult retinal cell types. Nat Neurosci 2012, 15:487-495. S481-482
  • [60]Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 2009, 50:3860-3868.
  • [61]Chidlow G, Casson R, Sobrado-Calvo P, Vidal-Sanz M, Osborne NN: Measurement of retinal injury in the rat after optic nerve transection: an RT-PCR study. Mol Vis 2005, 11:387-396.
  • [62]Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA: Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 2007, 8:424-436.
  • [63]Severin J, Lizio M, Harshbarger J, Kawaji H, Daub CO, Hayashizaki Y, Bertin N, Forrest AR: Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 2014, 32:217-219.
  • [64]Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO, Kawai J, Heutink P, Hide W, Freeman TC, Lenhard B, Bajic VB, Taylor MS, Makeev VJ, Sandelin A, Hume DA, Carninci P, Hayashizaki Y: A promoter-level mammalian expression atlas. Nature 2014, 507:462-470.
  • [65]Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR: PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 2006, 393:201-209.
  • [66]Logue SE, Cleary P, Saveljeva S, Samali A: New directions in ER stress-induced cell death. Apoptosis 2013, 18:537-546.
  • [67]Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, Zhu L, Chittenden T: Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 2001, 98:11318-11323.
  • [68]Merry DE, Korsmeyer SJ: Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997, 20:245-267.
  • [69]Liu F, Nguyen JL, Hulleman JD, Li L, Rochet JC: Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson’s disease. J Neurochem 2008, 105:2435-2453.
  • [70]Tombran-Tink J, Barnstable CJ: PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 2003, 4:628-636.
  • [71]Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5:101-113.
  • [72]Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A: Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009, 28:423-451.
  • [73]Galindo-Romero C, Valiente-Soriano FJ, Jimenez-Lopez M, Garcia-Ayuso D, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M: Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest Ophthalmol Vis Sci 2013, 54:974-985.
  • [74]Milton RH, Abeti R, Averaimo S, DeBiasi S, Vitellaro L, Jiang L, Curmi PM, Breit SN, Duchen MR, Mazzanti M: CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia. J Neurosci 2008, 28:11488-11499.
  • [75]Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T: Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 2013, 127:669-680.
  • [76]Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B: Microglial TIR-domain-containing adapter-inducing interferon-beta (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-kappaB. J Neuroinflammation 2012, 9:39. BioMed Central Full Text
  • [77]Eden A, Benvenisty N: Involvement of branched-chain amino acid aminotransferase (Bcat1/Eca39) in apoptosis. FEBS Lett 1999, 457:255-261.
  • [78]Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP: Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 2010, 30:16938-16948.
  • [79]Leaver SG, Cui Q, Bernard O, Harvey AR: Cooperative effects of bcl-2 and AAV-mediated expression of CNTF on retinal ganglion cell survival and axonal regeneration in adult transgenic mice. Eur J Neurosci 2006, 24:3323-3332.
  • [80]Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Murakami Y, Yoshida N, Tabata T, Hasegawa M, Tobimatsu S, Sueishi K, Ishibashi T: Pigment epithelium-derived factor gene therapy targeting retinal ganglion cell injuries: neuroprotection against loss of function in two animal models. Hum Gene Ther 2011, 22:559-565.
  • [81]Magharious M, D’Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD: Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J Proteome Res 2011, 10:3344-3362.
  • [82]Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299:256-259.
  • [83]Kahle PJ, Waak J, Gasser T: DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med 2009, 47:1354-1361.
  • [84]Kim I, Xu W, Reed JC: Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008, 7:1013-1030.
  • [85]Katome T, Namekata K, Guo X, Semba K, Kittaka D, Kawamura K, Kimura A, Harada C, Ichijo H, Mitamura Y, Harada T: Inhibition of ASK1-p38 pathway prevents neural cell death following optic nerve injury. Cell Death Differ 2013, 20:270-280.
  • [86]Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z: Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322:963-966.
  • [87]Deniaud E, Baguet J, Mathieu AL, Pages G, Marvel J, Leverrier Y: Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 2006, 25:7096-7105.
  • [88]Koutsodontis G, Tentes I, Papakosta P, Moustakas A, Kardassis D: Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein. J Biol Chem 2001, 276:29116-29125.
  • [89]Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, Kiyama H: Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. J Biol Chem 2008, 283:6988-6996.
  • [90]Kiryu-Seo S: Identification and functional analysis of damage-induced neuronal endopeptidase (DINE), a nerve injury associated molecule. Anat Sci Int 2006, 81:1-6.
  文献评价指标  
  下载次数:38次 浏览次数:10次