期刊论文详细信息
BMC Evolutionary Biology
Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility
Anthony M Poole1  Marc P Hoeppner2 
[1] School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand;Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
关键词: Constrained drift;    Introns-first;    Retrotransposition;    Intron;    Last Eukaryotic Common Ancestor;    snoRNA;   
Others  :  1140285
DOI  :  10.1186/1471-2148-12-183
 received in 2012-06-20, accepted in 2012-09-04,  发布年份 2012
PDF
【 摘 要 】

Background

Small nucleolar (sno)RNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes.

Results

We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA), but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates.

Conclusions

Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not evolutionarily stable across the eukaryote tree; ongoing intragenomic mobility has erased signal of their ancestral gene organization, and neither introns-first nor evolved co-expression adequately explain our results. We therefore present a third model — constrained drift — whereby individual snoRNAs are intragenomically mobile and may occupy any genomic location from which expression satisfies phenotype.

【 授权许可】

   
2012 Hoeppner and Poole; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324183614559.pdf 1805KB PDF download
Figure 10. 49KB Image download
Figure 9. 57KB Image download
Figure 8. 23KB Image download
Figure 7. 118KB Image download
Figure 6. 44KB Image download
Figure 5. 66KB Image download
Figure 4. 59KB Image download
Figure 3. 156KB Image download
Figure 2. 205KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Ganot P, Bortolin ML, Kiss T: Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 1997, 89:799-809.
  • [2]Ni J, Tien AL, Fournier MJ: Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997, 89:565-573.
  • [3]Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T: Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996, 85:1077-1088.
  • [4]Bachellerie JP, Cavaillé J, Hüttenhofer A: The expanding snoRNA world. Biochimie 2002, 84:775-790.
  • [5]Kishore S, Stamm S: The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 2006, 311:230-232.
  • [6]Gaspin C, Cavaille J, Erauso G, Bachellerie JP: Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 2000, 297:895-906.
  • [7]Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP: Homologs of small nucleolar RNAs in Archaea. Science 2000, 288:517-522.
  • [8]Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Huttenhofer A: Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 2002, 99:7536-7541.
  • [9]Ofengand J, Bakin A: Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 1997, 266:246-268.
  • [10]Cermakian N, Cedergren R: Modified nucleotides always were: an evolutionary model. In Modification and editing of RNA. Edited by Grosjean HRB. Washington D.C: ASM Press; 1998:535-541.
  • [11]Dennis PP, Omer A: Small non-coding RNAs in Archaea. Curr Opin Microbiol 2005, 8:685-694.
  • [12]Gardner PP, Bateman A, Poole AM: SnoPatrol: how many snoRNA genes are there? J Biol 2010, 9:4. BioMed Central Full Text
  • [13]Lafontaine DL, Tollervey D: Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 1998, 23:383-388.
  • [14]Morrissey JP, Tollervey D: Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem Sci 1995, 20:78-82.
  • [15]Jeffares DC, Poole AM, Penny D: Pre-rRNA processing and the path from the RNA world. Trends Biochem Sci 1995, 20:298-299.
  • [16]Penny D, Hoeppner MP, Poole AM, Jeffares DC: An overview of the introns-first theory. J Mol Evol 2009.
  • [17]Poole AM, Jeffares DC, Penny D: The path from the RNA world. J Mol Evol 1998, 46:1-17.
  • [18]Sollner-Webb B: Novel intron-encoded small nucleolar RNAs. Cell 1993, 75:403-405.
  • [19]Weber MJ: Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2006, 2:e205.
  • [20]Luo Y, Li S: Genome-wide analyses of retrogenes derived from the human box H/ACA snoRNAs. Nucleic Acids Res 2007, 35:559-571.
  • [21]Schmitz J, Zemann A, Churakov G, Kuhl H, Grützner F, Reinhardt R, Brosius J: Retroposed SNOfall–a mammalian-wide comparison of platypus snoRNAs. Genome Res 2008, 18:1005-1010.
  • [22]Hoeppner MP, White S, Jeffares DC, Poole AM: Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome biology and evolution 2009, 1:420-428.
  • [23]Roy SW, Gilbert W: Complex early genes. Proc Natl Acad Sci U S A 2005, 102:1986-1991.
  • [24]Stechmann A, Cavalier-Smith T: Rooting the eukaryote tree by using a derived gene fusion. Science 2002, 297:89-91.
  • [25]Stechmann A, Cavalier-Smith T: The root of the eukaryote tree pinpointed. Curr Biol 2003, 13:R665-666.
  • [26]Derelle R, Lang BF: Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 2012, 29:1277-1289.
  • [27]Schattner P, Barberan-Soler S, Lowe TM: A computational screen for mammalian pseudouridylation guide H/ACA RNAs. RNA 2006, 12:15-25.
  • [28]Schattner P, Decatur WA, Davis CA, Ares M, Fournier MJ, Lowe TM: Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 2004, 32:4281-4296.
  • [29]Freyhult E, Edvardsson S, Tamas I, Moulton V, Poole AM: Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics - assessment and update. BMC Res Notes 2008, 1:49. BioMed Central Full Text
  • [30]Katz LA, Grant JR, Parfrey LW, Burleigh JG: Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 2012, 61:653-660.
  • [31]Zemann A, op de Bekke A, Kiefmann M, Brosius J, Schmitz J: Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 2006, 34:2676-2685.
  • [32]Brosius J: The contribution of RNAs and retroposition to evolutionary novelties. Genetica 2003, 118:99-116.
  • [33]Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 2009, 25:1335-1337.
  • [34]Brown JW, Echeverria M, Qu LH, Lowe TM, Bachellerie JP, Huttenhofer A, Kastenmayer JP, Green PJ, Shaw P, Marshall DF: Plant snoRNA database. Nucleic Acids Res 2003, 31:432-435.
  • [35]Lestrade L, Weber MJ: snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 2006, 34:D158-162.
  • [36]Piekna-Przybylska D, Decatur WA, Fournier MJ: New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA 2007, 13:305-312.
  • [37]Piekna-Przybylska D, Decatur WA, Fournier MJ: The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res 2008, 36:D178-183.
  • [38]Wilm A, Higgins DG, Notredame C: R-Coffee: a method for multiple alignment of non-coding RNA. Nucleic Acids Res 2008, 36:e52.
  • [39]Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinforma 2008, 9:474. BioMed Central Full Text
  • [40]Jeffares DC, Poole AM, Penny D: Relics from the RNA world. J Mol Evol 1998, 46:18-36.
  • [41]Lecompte O, Ripp R, Thierry JC, Moras D, Poch O: Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 2002, 30:5382-5390.
  • [42]Harris JK, Kelley ST, Spiegelman GB, Pace NR: The genetic core of the universal ancestor. Genome Res 2003, 13:407-412.
  • [43]Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM: Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 2007, 104:19908-19913.
  • [44]Milinkovitch MC, Helaers R, Tzika AC: Historical constraints on vertebrate genome evolution. Genome Biol Evol 2010, 2:13-18.
  • [45]Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al.: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004, 101:6062-6067.
  • [46]Neumann N, Lundin D, Poole AM: Comparative genomic evidence for a complete nuclear pore complex in the last eukaryote common ancestor. PLoS One 2010, 5:e13241.
  • [47]Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S: On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 2011, 162:53-70.
  • [48]Bonen L, Calixte S: Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins. Mol Biol Evol 2006, 23:701-712.
  • [49]Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ: Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 2007, 35:4686-4703.
  • [50]Yoshihama M, Nakao A, Nguyen HD, Kenmochi N: Analysis of ribosomal protein gene structures: implications for intron evolution. PLoS Genet 2006, 2:e25.
  • [51]Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M, et al.: The evolution of gene expression levels in mammalian organs. Nature 2011, 478:343-348.
  • [52]Breaker RR: Riboswitches and the RNA World. Cold Spring Harb Perspect Biol 2010.
  • [53]Hoeppner MP, Gardner PP, Poole AM: Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comp Biol 2012. in press
  • [54]Rodriguez-Trelles F, Tarrio R, Ayala FJ: Origins and evolution of spliceosomal introns. Annu Rev Genet 2006, 40:47-76.
  • [55]Roy SW, Gilbert W: The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 2006, 7:211-221.
  • [56]Badis G, Fromont-Racine M, Jacquier A: A snoRNA that guides the two most conserved pseudouridine modifications within rRNA confers a growth advantage in yeast. RNA 2003, 9:771-779.
  • [57]King TH, Liu B, McCully RR, Fournier MJ: Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 2003, 11:425-435.
  • [58]Esguerra J, Warringer J, Blomberg A: Functional importance of individual rRNA 2'-O-ribose methylations revealed by high-resolution phenotyping. RNA 2008, 14:649-656.
  • [59]Runte M, Varon R, Horn D, Horsthemke B, Buiting K: Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum Genet 2005, 116:228-230.
  • [60]Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, Karpova E, Rozhdestvensky TS, Brosius J: Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 2007, 3:e235.
  • [61]Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U: SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008, 3:e1709.
  • [62]Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, Herrero J, Keenan S, Kerhornou A, Koscielny G, Kahari A, et al.: Ensembl Genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res 2010, 38:D563-569.
  • [63]Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, et al.: Ensembl 2009. Nucleic Acids Res 2009, 37:D690-697.
  • [64]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al.: Ensembl 2011. Nucleic Acids Res 2011, 39:D800-806.
  • [65]Strozzi F, Aerts J: A Ruby API to query the Ensembl database for genomic features. Bioinformatics 2011, 27:1013-1014.
  • [66]Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby: bioinformatics software for the Ruby programming language. Bioinformatics 2010, 26:2617-2619.
  • [67]Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A: Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Res 2011, 39:D141-145.
  • [68]Drysdale R: FlyBase: a database for the Drosophila research community. Methods Mol Biol 2008, 420:45-59.
  • [69]Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, Davis P, Duesbury M, Fang R, et al.: WormBase: a comprehensive resource for nematode research. Nucleic Acids Res 2010, 38:D463-467.
  • [70]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [71]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.
  • [72]Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2010, 38:D196-203.
  • [73]Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 2005, 15:330-340.
  • [74]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [75]Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35:7188-7196.
  • [76]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [77]Carmel L, Rogozin IB, Wolf YI, Koonin EV: Patterns of intron gain and conservation in eukaryotic genes. BMC Evol Biol 2007, 7:192. BioMed Central Full Text
  • [78]Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, et al.: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 2005, 52:399-451.
  • [79]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. http://evolution.genetics.washington.edu/phylip.html webcite
  • [80]Farris J: Phylogenetic analysis under Dollo's Law. Syst Biol 1977, 26:77-88.
  • [81]Pagel M, Meade A, Barker D: Bayesian estimation of ancestral character states on phylogenies. Syst Biol 2004, 53:673-684.
  • [82]Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, et al.: ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 2011, 39:D1002-1004.
  文献评价指标  
  下载次数:33次 浏览次数:14次