期刊论文详细信息
BMC Microbiology
Arginine deiminase pathway is far more important than urease for acid resistance and intracellular survival in Laribacter hongkongensis: a possible result of arc gene cassette duplication
Patrick CY Woo2  Susanna KP Lau2  Biao Kan1  Rory M Watt3  Jade LL Teng4  Lifeng Xiong5 
[1] State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China;Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China;Oral Biosciences, The University of Hong Kong, Hong Kong, China;Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China;Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, University Pathology Building, Hong Kong, China
关键词: Microbe-host interaction;    Arginine deiminase pathway;    Acid resistance;    Laribacter hongkongensis;   
Others  :  1141904
DOI  :  10.1186/1471-2180-14-42
 received in 2013-08-02, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Laribacter hongkongensis is a Gram-negative, urease-positive bacillus associated with invasive bacteremic infections in liver cirrhosis patients and fish-borne community-acquired gastroenteritis and traveler’s diarrhea. Its mechanisms of adaptation to various environmental niches and host defense evasion are largely unknown. During the process of analyzing the L. hongkongensis genome, a complete urease cassette and two adjacent arc gene cassettes were found. We hypothesize that the urease cassette and/or the arc gene cassettes are important for L. hongkongensis to survive in acidic environment and macrophages. In this study, we tested this hypothesis by constructing single, double and triple non-polar deletion mutants of the urease and two arc gene cassettes of L. hongkongensis using the conjugation-mediated gene deletion system and examining their effects in acidic environment in vitro, in macrophages and in a mouse model.

Results

HLHK9∆ureA, HLHK9∆ureC, HLHK9∆ureD and HLHK9∆ureE all exhibited no urease activity. HLHK9∆arcA1 and HLHK9∆arcA2 both exhibited arginine deiminase (ADI) activities, but HLHK9∆arcA1/arcA2 double deletion mutant exhibited no ADI activity. At pH 2 and 3, survival of HLHK9∆arcA1/arcA2 and HLHK9∆ureA/arcA1/arcA2 were markedly decreased (p < 0.001) but that of HLHK9∆ureA was slightly decreased (p < 0.05), compared to wild type L. hongkongensis HLHK9. Survival of HLHK9∆ureA/arcA1/arcA2 and HLHK9∆arcA1/arcA2 in macrophages were also markedly decreased (p < 0.001 and p < 0.01 respectively) but that of HLHK9∆ureA was slightly decreased (p < 0.05), compared to HLHK9, although expression of arcA1, arcA2 and ureA genes were all upregulated. Using a mouse model, HLHK9∆ureA exhibited similar survival compared to HLHK9 after passing through the murine stomach, but survival of HLHK9∆arcA1/arcA2 and HLHK9∆ureA/arcA1/arcA2 were markedly reduced (p < 0.01).

Conclusions

In contrast to other important gastrointestinal tract pathogens, ADI pathway is far more important than urease for acid resistance and intracellular survival in L. hongkongensis. The gene duplication of the arc gene cassettes could be a result of their functional importance in L. hongkongensis.

【 授权许可】

   
2014 Xiong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327172017893.pdf 984KB PDF download
Figure 5. 98KB Image download
Figure 4. 55KB Image download
Figure 3. 62KB Image download
Figure 2. 77KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yuen KY, Woo PC, Teng JL, Leung KW, Wong MK, Lau SK: Laribacter hongkongensis gen. nov., sp. nov., a novel gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J Clin Microbiol 2001, 39:4227-4232.
  • [2]Kim DS, Wi YM, Choi JY, Peck KR, Song JH, Ko KS: Bacteremia caused by Laribacter hongkongensis misidentified as Acinetobacter lwoffii: report of the first case in Korea. J Korean Med Sci 2011, 26:679-681.
  • [3]Woo PC, Lau SK, Teng JL, Que TL, Yung RW, Luk WK, Lai RW, Hui WT, Wong SS, Yau HH, et al.: Association of Laribacter hongkongensis in community-acquired gastroenteritis with travel and eating fish: a multicentre case–control study. Lancet 2004, 363:1941-1947.
  • [4]Ni XP, Ren SH, Sun JR, Xiang HQ, Gao Y, Kong QX, Cha J, Pan JC, Yu H, Li HM: Laribacter hongkongensis isolated from a patient with community-acquired gastroenteritis in Hangzhou City. J Clin Microbiol 2007, 45:255-256.
  • [5]Woo PC, Kuhnert P, Burnens AP, Teng JL, Lau SK, Que TL, Yau HH, Yuen KY: Laribacter hongkongensis: a potential cause of infectious diarrhea. Diagn Microbiol Infect Dis 2003, 47:551-556.
  • [6]Woo PC, Lau SK, Teng JL, Yuen KY: Current status and future directions for Laribacter hongkongensis, a novel bacterium associated with gastroenteritis and traveller’s diarrhoea. Curr Opin Infect Dis 2005, 18:413-419.
  • [7]Lau SK, Woo PC, Fan RY, Lee RC, Teng JL, Yuen KY: Seasonal and tissue distribution of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, in retail freshwater fish in Hong Kong. Int J Food Microbiol 2007, 113:62-66.
  • [8]Teng JL, Woo PC, Ma SS, Sit TH, Ng LT, Hui WT, Lau SK, Yuen KY: Ecoepidemiology of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis. J Clin Microbiol 2005, 43:919-922.
  • [9]Lau SK, Lee LC, Fan RY, Teng JL, Tse CW, Woo PC, Yuen KY: Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from Chinese tiger frog. Int J Food Microbiol 2009, 129:78-82.
  • [10]Lau SK, Woo PC, Fan RY, Ma SS, Hui WT, Au SY, Chan LL, Chan JY, Lau AT, Leung KY, et al.: Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from drinking water reservoirs in Hong Kong. J Appl Microbiol 2007, 103:507-515.
  • [11]Ni X, Sun J, Kong Q, Kong F, Brown M, Shen L, Cha J, Xiang H, Xu H, Jin H: Isolation of Laribacter hongkongensis from Little Egrets (Egretta garzetta) in Hangzhou, China. Lett Appl Microbiol 2011, 52:465-467.
  • [12]Woo PC, Teng JL, Tsang AK, Tse H, Tsang VY, Chan KM, Lee EK, Chan JK, Ma SS, Tam DM, et al.: Development of a multi-locus sequence typing scheme for Laribacter hongkongensis, a novel bacterium associated with freshwater fish-borne gastroenteritis and traveler’s diarrhea. BMC Microbiol 2009, 9:21. BioMed Central Full Text
  • [13]Bearson S, Bearson B, Foster JW: Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997, 147:173-180.
  • [14]Benjamin MM, Datta AR: Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol 1995, 61:1669-1672.
  • [15]Mobley HL, Island MD, Hausinger RP: Molecular biology of microbial ureases. Microbiol Rev 1995, 59:451-480.
  • [16]Marshall BJ, Barrett LJ, Prakash C, McCallum RW, Guerrant RL: Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 1990, 99:697-702.
  • [17]Woo PC, Lau SK, Tse H, Teng JL, Curreem SO, Tsang AK, Fan RY, Wong GK, Huang Y, Loman NJ, et al.: The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet 2009, 5:e1000416.
  • [18]Casiano-Colon A, Marquis RE: Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol 1988, 54:1318-1324.
  • [19]Degnan BA, Fontaine MC, Doebereiner AH, Lee JJ, Mastroeni P, Dougan G, Goodacre JA, Kehoe MA: Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun 2000, 68:2441-2448.
  • [20]Gruening P, Fulde M, Valentin-Weigand P, Goethe R: Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006, 188:361-369.
  • [21]Marquis RE, Bender GR, Murray DR, Wong A: Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol 1987, 53:198-200.
  • [22]Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D: Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 2004, 51:246-255.
  • [23]Simon R, Priefer U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983, 1:784-791.
  • [24]Zhang J, Li W, Zhang Q, Wang H, Xu X, Diao B, Zhang L, Kan B: The core oligosaccharide and thioredoxin of Vibrio cholerae are necessary for binding and propagation of its typing phage VP3. J Bacteriol 2009, 191:2622-2629.
  • [25]Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988, 170:2575-2583.
  • [26]Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (Eds): Manual of clinical microbiology 10th edition. Washington, D.C: American Society for Microbiology; 2011.
  • [27]Paixao TA, Roux CM, den Hartigh AB, Sankaran-Walters S, Dandekar S, Santos RL, Tsolis RM: Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen. Infect Immun 2009, 77:4197-4208.
  • [28]Boyde TR, Rahmatullah M: Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 1980, 107:424-431.
  • [29]Ryan S, Begley M, Gahan CG, Hill C: Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 2009, 11:432-445.
  • [30]De Koning-Ward TF, Robins-Browne RM: Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect Immun 1995, 63:3790-3795.
  • [31]Sangari FJ, Seoane A, Rodriguez MC, Aguero J, Garcia Lobo JM: Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 2007, 75:774-780.
  • [32]Choi Y, Choi J, Groisman EA, Kang DH, Shin D, Ryu S: Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to Salmonella enterica serovar Typhimurium virulence. Infect Immun 2012, 80:4291-4297.
  • [33]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 2001, 25:402-408.
  • [34]Woo PC, Lam CW, Tam EW, Leung CK, Wong SS, Lau SK, Yuen KY: First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Negl Trop Dis 2012, 6:e1871.
  • [35]Maroncle N, Rich C, Forestier C: The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res Microbiol 2006, 157:184-193.
  • [36]Schwartz JT, Allen LA: Role of urease in megasome formation and Helicobacter pylori survival in macrophages. J Leukoc Biol 2006, 79:1214-1225.
  • [37]Bandara AB, Contreras A, Contreras-Rodriguez A, Martins AM, Dobrean V, Poff-Reichow S, Rajasekaran P, Sriranganathan N, Schurig GG, Boyle SM: Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 2007, 7:57. BioMed Central Full Text
  • [38]Ferrero RL, Cussac V, Courcoux P, Labigne A: Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 1992, 174:4212-4217.
  • [39]Brussow H, Canchaya C, Hardt WD: Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004, 68:560-602.
  • [40]Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et al.: Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459:657-662.
  • [41]Moran GP, Coleman DC, Sullivan DJ: Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell 2011, 10:34-42.
  • [42]Lau SK, Wong GK, Tsang AK, Teng JL, Fan RY, Tse H, Yuen KY, Woo PC: Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci 2011, 1:17. BioMed Central Full Text
  • [43]Donnenberg MS, Kaper JB: Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 1991, 59:4310-4317.
  • [44]Woo PC, Ma SS, Teng JL, Li MW, Kao RY, Lau SK, Yuen KY: Construction of an inducible expression shuttle vector for Laribacter hongkongensis, a novel bacterium associated with gastroenteritis. FEMS Microbiol Lett 2005, 252:57-65.
  • [45]Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477:596-600.
  文献评价指标  
  下载次数:28次 浏览次数:13次