期刊论文详细信息
BMC Genomics
Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae
John M Archibald2  Michael Melkonian1  Gane Ka-Shu Wong4  Andrew J Roger2  Bruce A Curtis2  Matthew W Brown5  Naoko T Onodera2  Goro Tanifuji3 
[1] Department of Botany, Cologne Biocenter, University of Cologne, Cologne 50674, Germany;Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada;Faculty of life and environmental sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan;BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China;Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
关键词: Phylogenomics;    Endosymbiosis;    Cryptophytes;    Chlorarachniophytes;    Genome reduction;    Nucleomorph;   
Others  :  1217227
DOI  :  10.1186/1471-2164-15-374
 received in 2014-01-10, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution.

Results

The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny.

Conclusions

We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.

【 授权许可】

   
2014 Tanifuji et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705122942903.pdf 1606KB PDF download
Figure 6. 112KB Image download
Figure 5. 42KB Image download
Figure 4. 71KB Image download
Figure 3. 64KB Image download
Figure 2. 74KB Image download
Figure 1. 177KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dolezal P, Likic V, Tachezy J, Lithgow T: Evolution of the molecular machines for protein import into mitochondria. Science 2006, 313:314-318.
  • [2]Gray MW, Burger G, Lang BF: Mitochondrial evolution. Science 1999, 283:1476-1481.
  • [3]Gould SB, Waller RR, McFadden GI: Plastid evolution. Annu Rev Plant Biol 2008, 59:491-517.
  • [4]Reyes-Prieto A, Weber APM, Bhattacharya D: The origin and establishment of the plastid in algae and plants. Annu Rev Genet 2007, 41:147-168.
  • [5]Martin W, Herrmann RG: Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 1998, 118:9-17.
  • [6]Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 2002, 99:12246-12251.
  • [7]Timmis JN, Ayliffe MA, Huang CY, Martin W: Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004, 5:123-135.
  • [8]Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ: Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. Pros One 2008, 3:e1994.
  • [9]Tanifuji G, Archibald JM: Nucleomorph comparative genomics. In Endosymbiosis. Edited by Wolfgang Löffelhardt. Vienna: Springer; 2014:197-214.
  • [10]Douglas S, Murphy CA, Spencer DF, Gray MW: Cryptomonad algae are evolutionaly chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 1991, 350:148-151.
  • [11]van de Peer Y, Rensing SA, Maier UG, De Wachter R: Substituon rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci USA 1996, 93:7732-7736.
  • [12]Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ: The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 2007, 24:54-62.
  • [13]Silver TD, Koike S, Yabuki A, Kofuji R, Archibald JM, Ishida KI: Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae. J Eukaryot Microbiol 2007, 54:403-410.
  • [14]Tanifuji G, Onodera NT, Hara Y: Nucleomorph genome diversity and its phylogenetic implications in cryptomonad algae. Phycol Res 2010, 58:230-237.
  • [15]Ishida K, Endo H, Koike S: Partenskyella glossopodia (Chlorarachniophyceae) possesses a nucleomorph genome of approximately 1 Mbp. Phycol Res 2011, 59:120-122.
  • [16]Silver TD, Moore CE, Archibald JM: Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. J Eukaryot Microbiol 2010, 57:453-459.
  • [17]Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI: Complete nucleotide sequence of the chlorarachniophyte nucleomorph: Nature's smallest nucleus. P Natl Acad Sci USA 2006, 103:9566-9571.
  • [18]Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG: The highly reduced genome of an enslaved algal nucleus. Nature 2001, 410:1091-1096.
  • [19]Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM: Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 2007, 104:19908-19913.
  • [20]Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM: Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 2011, 3:44-54.
  • [21]Moore CE, Curtis BA, Mills T, Tanifuji G, Archibald JM: Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 2012, 4:1162-1175.
  • [22]Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, Alaoui HEI, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP: Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001, 414:450-453.
  • [23]Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C, Horino A, Shiba T, Sasaki T, Hattori M: The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 2002, 30:5293-5300.
  • [24]Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ: The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 2010, 1:77.
  • [25]McCutcheon JP, McDonald BR, Moran NA: Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. Plos Genet 2009, 5:e1000565.
  • [26]Smith DR: Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol 2009, 71:627-639.
  • [27]Slamovits CH, Keeling PJ: Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes. Mol Biol Evol 2009, 26:1699-1705.
  • [28]Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, et al.: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318:245-251.
  • [29]Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou KM, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, et al.: The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 2007, 104:7705-7710.
  • [30]Roy SW, Penny D: Patterns of intron loss and gain in plants: Intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 2007, 24:171-181.
  • [31]Douglas SE, Penny SL: The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 1999, 48:236-244.
  • [32]Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM: Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: Lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 2007, 24:1832-1842.
  • [33]Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM: The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol 2009, 1:439-448.
  • [34]Emanuelsson O, Nielsen H, von Heijne G: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 1999, 8:978-984.
  • [35]Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000, 300:1005-1016.
  • [36]Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM: Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Mol Biol Evol 2006, 23:856-865.
  • [37]Tanifuji G, Onodeta NT, Moore CE, Archibald JM: Reduced nuclear genomes maintain high gene transcription levels. Mol Biol Evol 2014, 31:625-635.
  • [38]Galtier N, Piganeau G, Mouchiroud D, Duret L: GC-content evolution in mammalian genomes: The biased gene conversion hypothesis. Genetics 2001, 159:907-911.
  • [39]Escobar JS, Glemin S, Galtier N: GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes. Mol Biol Evol 2011, 28:2561-2575.
  • [40]Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJM, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves ST, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, et al.: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 2012, 492:59-65.
  • [41]Turmel M, Gagnon MC, O'Kelly CJ, Otis C, Lemieux C: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 2009, 26:631-648.
  • [42]Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O: Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 2012, 31:1-46.
  • [43]Marin B: Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae(Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons. Protist 2012, 163:778-805.
  • [44]Marin B, Melkonian M: Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 2010, 161:304-336.
  • [45]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [46]Lartillot N, Rodrigue N, Stubbs D, Richer J: PhyloBayes MPI: Phylogenetic reconstruction with Infinite mixtures of profiles in a parallel environment. Syst Biol 2013, 62:611-615.
  • [47]Sun SL, Chen J, Li WZ, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J: Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res 2011, 39:D546-D551.
  • [48]Liu Y, Schmidt B, Maskell DL: Parallelized short read assembly of large genomes using de Bruijn graphs. BMC Bioinformatics 2011, 12:354. BioMed Central Full Text
  • [49]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [50]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [51]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29:24-26.
  • [52]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [53]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: A sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [54]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16:944-945.
  • [55]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33:W686-W689.
  • [56]R Development Core Team: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.
  • [57]Renner T, Waters ER: Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell stress Chaperones 2007, 12:172-185.
  • [58]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [59]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [60]Criscuolo A, Gribaldo S: BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010, 10:210. BioMed Central Full Text
  • [61]Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ: Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 2013, 280:20131755.
  • [62]Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. Plos One 2007, 2:e790.
  • [63]Burki F, Okamoto N, Pombert JF, Keeling PJ: The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 2012, 279:2246-2254.
  • [64]Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ: Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic “supergroups”. P Natl Acad Sci USA 2009, 106:3859-3864.
  • [65]Brown MW, Kolisko M, Silberman JD, Roger AJ: Aggregative multicellularity evolved independently in the eukaryotic supergroup rhizaria. Curr Biol 2012, 22:1123-1127.
  文献评价指标  
  下载次数:77次 浏览次数:19次