期刊论文详细信息
BMC Medical Genomics
Defining the genomic signature of the parous breast
Jose Russo7  Paolo Toniolo5  Göran Hallmans1  Fathima Sheriff7  Robert Johansson1  Yelena Afanasyeva8  Janet Åhman6  Per Lenner3  Pal Bordas3  Anne Zeleniuch-Jacquotte8  Ilana Belitskaya-Lévy4  Alan A Arslan8  Patricia A Russo7  Irma H Russo7  Eric A Ross2  Michael Slifker2  Julia Santucci-Pereira7  Ricardo López de Cicco7  Suraj Peri2 
[1] Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden;Department of Biostatistics and Bioinformatics, Philadelphia, PA, 19111, USA;Departments of Radiation Sciences and Oncology, Umeå University, Umeå, Sweden;Division of Biostatistics, Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA;Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland;Sunderby Hospital, Luleå and the Norrbotten Mammography Screening Program, Luleå, Sweden;Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;Division of Epidemiology, New York University School of Medicine, New York, NY, 10016, USA
关键词: Bioinformatics.;    Normal breast transcriptome;    Breast cancer risk;    Parous and nulliparous breast transcriptome;    Breast differentiation;    Breast morphology;    Pregnancy;    Gene expression profiling;   
Others  :  1134584
DOI  :  10.1186/1755-8794-5-46
 received in 2012-01-24, accepted in 2012-09-19,  发布年份 2012
PDF
【 摘 要 】

Background

It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy.

Methods

In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry.

Results

We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis.

Conclusions

This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process.

【 授权许可】

   
2012 Peri et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306020514510.pdf 1903KB PDF download
Figure 2. 208KB Image download
Figure 1. 260KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Clarke CA, Purdie DM, Glaser SL: Population attributable risk of breast cancer in white women associated with immediately modifiable risk factors. BMC Cancer 2006, 6:170. BioMed Central Full Text
  • [2]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin 2007, 57:43-66.
  • [3]Russo J, Balogh GA, Russo IH: Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiol Biomarkers Prev 2008, 17:51-66.
  • [4]MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, Salber EJ, Valaoras VG, Yuasa S: Age at first birth and breast cancer risk. Bull World Health Organ 1970, 43:209-221.
  • [5]Thordarson G, Jin E, Guzman RC, Swanson SM, Nandi S, Talamantes F: Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis 1995, 16:2847-2853.
  • [6]Sinha DK, Pazik JE, Dao TL: Prevention of mammary carcinogenesis in rats by pregnancy: effect of full-term and interrupted pregnancy. Br J Cancer 1988, 57:390-394.
  • [7]Russo J, Russo IH: Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res 1980, 40:2677-2687.
  • [8]Tay LK, Russo J: Formation and removal of 7,12-dimethylbenz[a]anthracene–nucleic acid adducts in rat mammary epithelial cells with different susceptibility to carcinogenesis. Carcinogenesis 1981, 2:1327-1333.
  • [9]Russo IH, Koszalka M, Russo J: Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer 1991, 64:481-484.
  • [10]Fisher DA: Fetal and neonatal endocrinology. In Endocrinology. 5th edition. Edited by DeGroot LJ, Jameson JL. Elsevier Saunders, Philadelphia, PA; 2006:3369-3386.
  • [11]Russo J, Moral R, Balogh GA, Mailo D, Russo IH: The protective role of pregnancy in breast cancer. Breast Cancer Res 2005, 7:131-142. BioMed Central Full Text
  • [12]Russo J, Russo IH: Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr Relat Cancer 1997, 4:7-21.
  • [13]Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU: Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 2004, 23:6980-6985.
  • [14]Srivastava P, Russo J, Russo IH: Chorionic gonadotropin inhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis 1997, 18:1799-1808.
  • [15]Medina D: Breast cancer: the protective effect of pregnancy. Clin Cancer Res 2004, 10:380S-384S.
  • [16]Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM: Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 2001, 15:1993-2009.
  • [17]D'Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, Cox JD, Wang JY, Ha SI, Keister BA, Chodosh LA: Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol 2002, 16:2034-2051.
  • [18]Russo J, Russo IH: Endocrine control of breast development. In Molecular basis of breast cancer: prevention and treatment. Edited by Russo J, Russo IH. Springer, Berlin; 2004:64-67.
  • [19]Belitskaya-Levy I, Zeleniuch-Jacquotte A, Russo J, Russo IH, Bordas P, Ahman J, Afanasyeva Y, Johansson R, Lenner P, Li X, de Cicco RL, Peri S, Ross E, Russo PA, Santucci-Pereira J, Sheriff FS, Slifker M, Hallmans G, Toniolo P, Arslan AA: Characterization of a genomic signature of pregnancy identified in the breast. Cancer Prev Res 2011, 4:1457-1464.
  • [20]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [21]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
  • [22]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [23]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
  • [24]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [25]Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001, 125:279-284.
  • [26]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545-15550.
  • [27]de Graaf K, Hekerman P, Spelten O, Herrmann A, Packman LC, Bussow K, Muller-Newen G, Becker W: Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors. J Biol Chem 2004, 279:4612-4624.
  • [28]Wahl MC, Will CL, Luhrmann R: The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
  • [29]Taga Y, Miyoshi M, Okajima T, Matsuda T, Nadano D: Identification of heterogeneous nuclear ribonucleoprotein A/B as a cytoplasmic mRNA-binding protein in early involution of the mouse mammary gland. Cell Biochem Funct 2010, 28:321-328.
  • [30]Huang PR, Hung SC, Wang TC: Telomeric DNA-binding activities of heterogeneous nuclear ribonucleoprotein A3 in vitro and in vivo. Biochim Biophys Acta 2010, 1803:1164-1174.
  • [31]Han SP, Friend LR, Carson JH, Korza G, Barbarese E, Maggipinto M, Hatfield JT, Rothnagel JA, Smith R: Differential subcellular distributions and trafficking functions of hnRNP A2/B1 spliceoforms. Traffic 2010, 11:886-898.
  • [32]Loyer P, Trembley JH, Grenet JA, Busson A, Corlu A, Zhao W, Kocak M, Kidd VJ, Lahti JM: Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: influence of cyclin L isoforms on splice site selection. J Biol Chem 2008, 283:7721-7732.
  • [33]Li HL, Wang TS, Li XY, Li N, Huang DZ, Chen Q, Ba Y: Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells. Chin Med J (Engl) 2007, 120:905-909.
  • [34]Zhuo L, Gong J, Yang R, Sheng Y, Zhou L, Kong X, Cao K: Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells. Biochem Biophys Res Commun 2009, 390:451-457.
  • [35]Erwin JA, Lee JT: Characterization of X-chromosome inactivation status in human pluripotent stem cells. Curr Protoc Stem Cell Biol 2010, Chapter 1:Unit 1B 6.
  • [36]Do JT, Han DW, Gentile L, Sobek-Klocke I, Wutz A, Scholer HR: Reprogramming of Xist against the pluripotent state in fusion hybrids. J Cell Sci 2009, 122:4122-4129.
  • [37]Vincent-Salomon A, Ganem-Elbaz C, Manie E, Raynal V, Sastre-Garau X, Stoppa-Lyonnet D, Stern MH, Heard E: X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors. Cancer Res 2007, 67:5134-5140.
  • [38]Xiao C, Sharp JA, Kawahara M, Davalos AR, Difilippantonio MJ, Hu Y, Li W, Cao L, Buetow K, Ried T, Chadwick BP, Deng CX, Panning B: The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell 2007, 128:977-989.
  • [39]Silver DP, Dimitrov SD, Feunteun J, Gelman R, Drapkin R, Lu SD, Shestakova E, Velmurugan S, Denunzio N, Dragomir S, Mar J, Liu X, Rottenberg S, Jonkers J, Ganesan S, Livingston DM: Further evidence for BRCA1 communication with the inactive X chromosome. Cell 2007, 128:991-1002.
  • [40]Breton C, Di Scala-Guenot D, Zingg HH: Oxytocin receptor gene expression in rat mammary gland: structural characterization and regulation. J Mol Endocrinol 2001, 27:175-189.
  • [41]Koshimizu TA, Fujiwara Y, Sakai N, Shibata K, Tsuchiya H: Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci 2010, 86:455-460.
  • [42]Russo J, Rivera R, Russo IH: Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 1992, 23:211-218.
  • [43]Wilson BJ, Giguere V: Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer 2008, 7:49. BioMed Central Full Text
  • [44]Chou J, Provot S, Werb Z: GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2010, 222:42-49.
  • [45]Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY, Ho IC, Perou CM, Xiong Y: CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell 2009, 15:389-401.
  • [46]Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z: GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008, 13:141-152.
  • [47]Fischer J, Klein PJ, Farrar GH, Hanisch FG, Uhlenbruck G: Isolation and chemical and immunochemical characterization of the peanut-lectin-binding glycoprotein from human milk-fat-globule membranes. Biochem J 1984, 224:581-589.
  • [48]Chen L, O'Bryan JP, Smith HS, Liu E: Overexpression of matrix Gla protein mRNA in malignant human breast cells: isolation by differential cDNA hybridization. Oncogene 1990, 5:1391-1395.
  • [49]Holmes MD, Pollak MN, Hankinson SE: Lifestyle correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarkers Prev 2002, 11:862-867.
  • [50]Key TJ, Appleby PN, Reeves GK, Roddam AW: Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 2010, 11:530-542.
  • [51]De Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y: Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 2010, 70:9175-9184.
  文献评价指标  
  下载次数:15次 浏览次数:4次