期刊论文详细信息
BMC Genomics
Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins
Jean-Philippe David2  Stéphane Reynaud2  Vincent Navratil1  Aurélie Bonin2  Margot Paris2  Guillaume Tetreau2  Renaud Stalinski2  Laurence Després3 
[1] Pôle Rhône Alpes de Bioinformatique, Université Lyon 1, Lyon, France;Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Ecologie Alpine UMR5553, Grenoble, France;Laboratoire d’Ecologie Alpine, 2233 rue de la piscine, Université J. Fourier, BP53, 38041 Grenoble Cedex 09, France
关键词: Evolutionary trade-offs;    Resistance costs;    Lipid rafts;    Toxin receptors;    Bio-insecticide resistance;    Mosquito;    Bacillus thuringiensis israelensis toxins;    RNA-seq;   
Others  :  1128431
DOI  :  10.1186/1471-2164-15-926
 received in 2014-06-27, accepted in 2014-10-16,  发布年份 2014
PDF
【 摘 要 】

Background

Despite the intensive use of Bacillus thuringiensis israelensis (Bti) toxins for mosquito control, little is known about the long term effect of exposure to this cocktail of toxins on target mosquito populations. In contrast to the many cases of resistance to Bacillus thuringiensis Cry toxins observed in other insects, there is no evidence so far for Bti resistance evolution in field mosquito populations. High fitness costs measured in a Bti selected mosquito laboratory strain suggest that evolving resistance to Bti is costly. The aim of the present study was to identify transcription level and polymorphism variations associated with resistance to Bti toxins in the dengue vector Aedes aegypti. We used RNA sequencing (RNA-seq) for comparing a laboratory-selected strain showing elevated resistance to Bti toxins and its parental non-selected susceptible strain. As the resistant strain displayed two marked larval development phenotypes (slow and normal), each phenotype was analyzed separately in order to evidence potential links between resistance mechanisms and mosquito life-history traits.

Results

A total of 12,458 genes were detected of which 844 were differentially transcribed between the resistant and susceptible strains. Polymorphism analysis revealed a total of 68,541 SNPs of which 12,571 SNPs exhibited more than 40% frequency difference between the resistant and susceptible strains, affecting 2,953 genes. Bti resistance is associated with changes in the transcription level of enzymes involved in detoxification and chitin metabolism. Among previously described Bti-toxin receptors, four alkaline phosphatases (ALPs) were differentially transcribed between resistant and susceptible larvae, and non-synonymous changes affected the protein sequence of one cadherin, six aminopeptidases (APNs) and four α-amylases. Other putative Cry receptors located in lipid rafts, such as flotillin and glycoside hydrolases, were under-transcribed and/or contained non-synonymous substitutions. Finally, immunity-related genes showed contrasted transcription and polymorphisms patterns between the two developmental resistant phenotypes, suggesting the existence of trade-offs between Bti-resistance, life-history traits and immunity.

Conclusions

The present study is the first to analyze the whole transcriptome of Bti-resistant mosquitoes by RNA-seq, shedding light on the importance of studying both transcription levels and sequence polymorphism variations to get a comprehensive view of insecticide resistance.

【 授权许可】

   
2014 Després et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223075032623.pdf 2529KB PDF download
Figure 5. 60KB Image download
Figure 4. 87KB Image download
Figure 3. 143KB Image download
Figure 2. 111KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lacey LA: Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 2007, 23(2):133-163.
  • [2]Wirth MC, Park HW, Walton WE, Federici BA: Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol 2005, 71(1):185-189.
  • [3]Perez C, Fernandez LE, Sun JG, Folch JL, Gill SS, Soberon M, Bravo A: Bacillus thuringiensis subsp israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci U S A 2005, 102(51):18303-18308.
  • [4]Ferré J, Escriche B, Bel Y, Vanrie J: Biochemistry and genetics of insect resistance to Bacillus-thuringiensis insecticidal crystal proteins. Fems Microbiol Lett 1995, 132(1–2):1-7.
  • [5]Griffitts JS, Haslam SM, Yang TL, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV: Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005, 307(5711):922-925.
  • [6]Soberon M, Gill SS, Bravo A: Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 2009, 66(8):1337-1349.
  • [7]Vachon V, Laprade R, Schwartz JL: Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 2012, 111(1):1-12.
  • [8]Pigott CR, Ellar DJ: Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 2007, 71(2):255-281.
  • [9]Fernandez-Luna MT, Lanz-Mendoza H, Gill SS, Bravo A, Soberon M, Miranda-Rios J: An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Environ Microbiol 2010, 12(3):746-757.
  • [10]Tetreau G, Stalinski R, Kersusan D, Veyrenc S, David JP, Reynaud S, Despres L: Decreased Toxicity of Bacillus thuringiensis subsp. israelensis to Mosquito Larvae after Contact with Leaf Litter. Appl Environ Microbiol 2012, 78(15):5189-5195.
  • [11]Tetreau G, Alessi M, Veyrenc S, Périgon S, David JP, Reynaud S, Despres L: Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol 2012, 78(23):8362-8367.
  • [12]Paris M, Tetreau G, Laurent F, Lelu M, Despres L, David J-P: Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag Sci 2011, 67:122-128.
  • [13]Paris M, David JP, Despres L: Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology 2011, 20:1184-1194.
  • [14]Likitvivatanavong S, Chen JW, Evans AM, Bravo A, Soberon M, Gill SS: Multiple Receptors as Targets of Cry Toxins in Mosquitoes. J Agric Food Chem 2011, 59(7):2829-2838.
  • [15]Chen JW, Aimanova KG, Fernandez LE, Bravo A, Soberon M, Gill SS: Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp israelensis. Biochem J 2009, 424:191-200.
  • [16]Rebers JE, Riddiford LM: Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 1988, 203(2):411-423.
  • [17]Andersen SO: Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 1998, 28(5–6):421-434.
  • [18]Willis JH, Iconomidou V, Smith RF, Hamodrakas SJ: Cuticular proteins. In Comprehensive Molecular Insect Science, Volume 4. Edited by Gilbert L, Iatrou K, Gill S. Oxford: Elsevier; 2005:79-110.
  • [19]Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning CM, Liu CX, Wu KM, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M: Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis. PLoS One 2011, 6(3):e17606.
  • [20]Karumbaiah L, Oppert B, Jurat-Fuentes JL, Adang MJ: Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera : Noctuidae). Comp Biochem Physiol B-Biochem Mol Biol 2007, 146(1):139-146.
  • [21]Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK: Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 2002, 277(49):46849-46851.
  • [22]Tetreau G, Bayyareddy K, Jones CM, Stalinski R, Riaz MA, Paris M, David JP, Adang MJ, Despres L: Larval Midgut Modifications Associated with Bti Resistance in the Yellow Fever Mosquito using Proteomic and Transcriptomic Approaches. BMC Genomics 2012, 13:248. BioMed Central Full Text
  • [23]Tetreau G, Stalinski R, David JP, Despres L: Increase in larval gut proteolytic activities and Bti resistance in the dengue fever mosquito. Arch Insect Biochem Physiol 2013, 82(2):71-83.
  • [24]Rodriguez-Cabrera L, Trujillo-Bacallao D, Borras-Hidalgo O, Wright DJ, Ayra-Pardo C: RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol 2010, 12(11):2894-2903.
  • [25]Bayyareddy K, Zhu X, Orlando R, Adang MJ: Proteome Analysis of Cry4Ba Toxin-interacting Aedes aegypti Lipid Rafts using geLC-MS/MS. J Proteome Res 2012, 11(12):5843-5855.
  • [26]Rietveld A, Neutz S, Simons K, Eaton S: Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 1999, 274(17):12049-12054.
  • [27]Avisar D, Segal M, Sneh B, Zilberstein A: Cell-cycle-dependent resistance to Bacillus thuringiensis Cry1C toxin in Sf9 cells. J Cell Sci 2005, 118(14):3163-3171.
  • [28]Pust S, Dyve AB, Torgersen ML, van Deurs B, Sandvig K: Interplay between Toxin Transport and Flotillin Localization. Plos One 2010, 5(1):e8844.
  • [29]Iconomidou VA, Willis JH, Hamodrakas SJ: Unique features of the structural model of ‘hard’ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem Mol Biol 2005, 35(6):553-560.
  • [30]Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S: Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 2010, 40(3):214-227.
  • [31]Christensen BM, Li JY, Chen CC, Nappi AJ: Melanization immune responses in mosquito vectors. Trends Parasitol 2005, 21(4):192-199.
  • [32]Hillyer JF, Christensen BM: Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses. J Histochem Cytochem 2005, 53(6):689-698.
  • [33]Koella JC, Boete C: A genetic correlation between age at pupation and melanization immune response of the yellow fever mosquito Aedes aegypti. Evolution 2002, 56(5):1074-1079.
  • [34]Xie RY, Zhuang MB, Ross LS, Gomez I, Oltean DI, Bravo A, Soberon M, Gill SS: Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J Biol Chem 2005, 280(9):8416-8425.
  • [35]Siqueira HAA, Gonzalez-Cabrera J, Ferré J, Flannagan R, Siegfried BD: Analyses of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Appl Environ Microbiol 2006, 72(8):5318-5324.
  • [36]Sayed A, Nekl ER, Siqueira HAA, Wang HC, Ffrench-Constant RH, Bagley M, Siegfried BD: A novel cadherin-like gene from western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), larval midgut tissue. Insect Mol Biol 2007, 16:591-600.
  • [37]Peng DH, Xu XH, Ye WX, Yu ZN, Sun M: Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Appl Microbiol Biotechnol 2010, 85(4):1033-1040.
  • [38]Likitvivatanavong S, Chen JW, Bravo A, Soberon M, Gill SS: Cadherin, Alkaline Phosphatase, and Aminopeptidase N as Receptors of Cry11Ba Toxin from Bacillus thuringiensis subsp. jegathesan in Aedes aegypti. Appl Environ Microbiol 2011, 77(1):24-31.
  • [39]Hua G, Zhang R, Abdullah MAF, Adang MJ: Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 2008, 47(18):5101-5110.
  • [40]Saengwiman S, Aroonkesorn A, Dedvisitsakul P, Sakdee S, Leetachewa S, Angsuthanasombat C, Pootanakit K: In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Biochem Biophys Res Commun 2011, 407(4):708-713.
  • [41]Flannagan RD, Yu CG, Mathis JP, Meyer TE, Shi XM, Siqueira HAA, Siegfried BD: Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Insect Biochem Mol Biol 2005, 35(1):33-40.
  • [42]Fabrick JA, Tabashnik BE: Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochem Mol Biol 2007, 37(2):97-106.
  • [43]Fabrick J, Oppert C, Lorenzen MD, Morris K, Oppert B, Jurat-Fuentes JL: A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin. J Biol Chem 2009, 284(27):18401-18410.
  • [44]Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill SS, Soberon M: Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica Et Biophysica Acta-Biomembranes 2004, 1667(1):38-46.
  • [45]Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ, Brown JK, Tabashnik BE: Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A 2003, 100(9):5004-5009.
  • [46]Chen JW, Aimanova KG, Pan SQ, Gill SS: Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol 2009, 39(10):688-696.
  • [47]Singh A, Sivaprasad C: Functional interpretation of APN receptor from M.sexta using a molecular model. Bioinformation 2009, 3(8):321-325.
  • [48]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [49]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7:986-995.
  • [50]Tiňo P: Basic properties and information theory of Audic-Claverie statistic for analyzing cDNA arrays. BMC Bioinformatics 2009, 10:310. BioMed Central Full Text
  • [51]Paris M, Marcombe S, Coissac E, Corbel V, David JP, Despres L: Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti. Evol Appl 2013, 6(7):1012-1027.
  文献评价指标  
  下载次数:49次 浏览次数:24次