期刊论文详细信息
BMC Infectious Diseases
Interpreting measures of tuberculosis transmission: a case study on the Portuguese population
M Gabriela M Gomes2  Raquel Duarte1  Roberto FS Andrade3  Suani TR Pinho3  Paula Rodrigues4  Joao Sollari Lopes2 
[1] Instituto de Saúde Publica, Universidade do Porto, 4050-600 Porto, Portugal;Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal;Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210-340 Salvador, Brazil;Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
关键词: Tuberculosis epidemiology;    Transmission dynamics;    Sojourn times;    Heterogeneity;   
Others  :  1127514
DOI  :  10.1186/1471-2334-14-340
 received in 2013-12-09, accepted in 2014-06-09,  发布年份 2014
PDF
【 摘 要 】

Background

Tuberculosis remains a high burden for Human society despite considerable investments in its control. Unique features in the history of infection and transmission dynamics of tuberculosis pose serious limitations on the direct interpretation of surveillance data and call for models that incorporate latent processes and simulate specific interventions.

Methods

A transmission model was adjusted to the dataset of active tuberculosis cases reported in Portugal between 2002 and 2009. We estimated key transmission parameters from the data (i.e. time to diagnosis, treatment length, default proportion, proportion of pulmonary TB cases). Using the adjusted model to the Portuguese case, we estimated the total burden of tuberculosis in Portugal. We further performed sensitivity analysis to heterogeneities in susceptibility to infection and exposure intensity.

Results

We calculated a mean time to diagnose of 2.81 months and treatment length of 8.80 months in Portugal. The proportion defaulting treatment was calculated as 0.04 and the proportion of pulmonary cases as 0.75. Using these values, we estimated a TB burden of 1.6 million infected persons, corresponding to more than 15% of the Portuguese population. We further described the sensitivity of these estimates to heterogeneity.

Conclusions

We showed that the model reproduces well the observed dynamics of the Portuguese data, thus demonstrating its adequacy for devising control strategies for TB and predicting the effects of interventions.

【 授权许可】

   
2014 Lopes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220220017983.pdf 354KB PDF download
Figure 3. 43KB Image download
Figure 2. 94KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]WHO: Global Tuberculosis Control: WHO report 2013. Geneva, Switzerland: World Health Organization; 2011:246. Report No: WHO/HTM/TB/2011.16
  • [2]Small P, Fujiwara M: Management of tuberculosis in the United States. N Engl J Med 2001, 345:189-200.
  • [3]Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M: Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 2009, 68:2240-2246.
  • [4]Dye C, Williams B: The population dynamics and control of tuberculosis. Science 2010, 328(5980):856-861.
  • [5]Colijn C, Cohen T, Murray M: Mathematical Models of Tuberculosis: Accomplishments and Future Challenges. In BIOMAT 2006 - Int Symp Math Comput Biol. Edited by Mondaini R, Dilão R. Singapore: World Scientific Publishing Co Pte Ltd; 2007:123-148.
  • [6]Ozcaglar C, Shabbeer A, Vandenberg SL, Yener B, Bennett KP: Epidemiological models of Mycobacterium tuberculosis complex infections. Math Biosci 2012, 236:77-96.
  • [7]Aparicio JP, Castillo-Chavez C: Mathematical modelling of tuberculosis epidemics. Math Biosci Eng 2009, 6:209-237.
  • [8]Gomes MGM, Aguas R, Lopes JS, Nunes MC, Rebelo C, Rodrigues P, Struchiner CJ: How host heterogeneity governs tuberculosis reinfection. Proc R Soc B 2012, 279:2473-2478.
  • [9]ECDC, WHO: Tuberculosis Surveillance and Monitoring in Europe 2013. Stockholm, Sweden: European Centre for Disease Prevention; 2013:215.
  • [10]DGS: Programa Nacional de Luta Contra a Tuberculose - ponto da situação epidemiológica e de desempenho, Dia Mundial da Tuberculose. Lisbon, Portugal: Direcção-Geral da Saúde – Ministério da Saúde; 2013:16.
  • [11]Gomes MGM, Rodrigues P, Hilker FM, Mantilla-Beniers NB, Muehlen M, Paulo AC, Medley GF: Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions. J Theor Biol 2007, 248:608-617.
  • [12]Vynnycky E, Fine PEM: The annual risk of infection with Mycobacterium tuberculosis in Englan and Wales since 1901. Int J Tuberc Lung Dis 1997, 1:389-396.
  • [13]Vynnycky E, Borgdorff MW, Leung CC, Tam CM, Fine PEM: Limites impact of tuberculosis control in Hong Kong: attributable to high risks of reactivation disease. Epidemiol Infect 2008, 136:943-952.
  • [14]CDC: Tuberculosis Fact Sheet: TB Elimination - The Difference Between Latent TB Infection and TB Disease. [World Wide Web 2011] Available from: http://www.cdc.gov/tb/publications/factsheets/general/LTBIandActiveTB.htm webcite
  • [15]van den Driessche P, Watmough J: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 2002, 180:29-48.
  • [16]Verver S, Warren R, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, Enarson DA, Behr MA, van Helden PD: Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med 2005, 171(12):1430-1435.
  • [17]Couceiro L, Santana P, Nunes C: Pulmonary tuberculosis and risk factors in Portugal: a spatial analysis. Int J Tuberc Lung Dis 2011, 15:1445-1454.
  • [18]Karanikolos M, Mladovsky P, Cylus J, Thomson S, Basu S, Stuckler D, Mackenbach JP, McKee M: Financial crisis, austerity, and health in Europe. Lancet 2013, 381(9874):1323-1331.
  • [19]Kruk ME, Schwalbe NR, Aguiar CA: Timing of default from tuberculosis treatment: a systematic review. Trop Med Int Heal 2008, 13:703-712.
  • [20]Cohen T, Colijn C, Finklea B, Murray M: Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission. J R Soc Interface 2007, 4:523-531.
  • [21]Colijn C, Cohen T, Murray M: Emergent heterogeneity in declining tuberculosis epidemics. J Theor Biol 2007, 247:765-774.
  • [22]Vynnycky E, Fine PE: The long-term dynamics of tuberculosis and other diseases with long serial intervals: implications of and for changing reproduction numbers. Epidemiol Infect 1998, 121:309-324.
  • [23]Dye C, Williams BG: Population dynamics and control of multidrug-resistant tuberculosis. In Multidrug-Resistant Tuberculosis. 1st edition. Edited by Portaels F, Bastian I. Dortrecht: Academic Publishers; 2000:320.
  • [24]Murphy BM, Singer BH, Kirschner D: On treatment of tuberculosis in heterogeneous populations. J Theor Biol 2003, 223:391-404.
  • [25]Murphy BM, Singer BH, Anderson S, Kirschner D: Comparing epidemic tuberculosis in demographically distinct heterogeneous populations. Math Biosci 2002, 180:161-185.
  • [26]McShane H: Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans R Soc B 2011, 366:2782-2789.
  • [27]Bacaër N, Ouifki R, Pretorius C, Wood R, Williams B: Modeling the joint epidemics of TB and HIV in a South African township. J Math Biol 2008, 57(4):557-593.
  • [28]WHO: Global HIV/AIDS Response: Epidemic Update and Health Sector Progress Towards Universal Access: Progress Report 2011. Geneva, Switzerland: World Health Organization; 2011:224.
  • [29]Dowdy DW, Golub JE, Chaisson RE, Saraceni V: Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A 2012, 109(24):9557-9562.
  • [30]Sanchez MA, Blower SM: Uncertainty and sensitivity analysis of the basic reproductive rate. Am J Epidemiol 1997, 145(12):1127-1137.
  • [31]Vynnycky E: 13. The application of reproduction number concepts to tuberculosis Vynnycky E, Fine PEM. Epidemiol Infect 1998; 121: 309–324. Epidemiol Infecti 2005, 133(Suppl. 1):S45-S47.
  文献评价指标  
  下载次数:5次 浏览次数:11次