期刊论文详细信息
BMC Complementary and Alternative Medicine
Antioxidant and in vitro anticancer activities of phenolics isolated from sugar beet molasses
Shujuan Yu2  Fuquan Chen1  Yi Zhao1  Hecheng Meng1  Mingshun Chen1 
[1] College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan road, Guangzhou 510640, China;Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
关键词: Antitumor activities;    Antioxidant activities;    Phenolic compounds;    Sugar beet molasses;   
Others  :  1224051
DOI  :  10.1186/s12906-015-0847-5
 received in 2015-05-19, accepted in 2015-09-02,  发布年份 2015
PDF
【 摘 要 】

Background

In the present study, the phenolic compounds were prepared using ultrasonic-aid extraction from sugar beet molasses (SBM).

Methods

Gallic acid (GA), cyanidin-3-O-glucoside chloride (CGC) and epicatechin (EP) were produced after column chromatography from the extraction, and further detected using NMR, QTOF-MS and ESI-MS/MS.

Results

The three compounds exhibited strong antioxidant activities including DPPH radical scavenging activities, ABTS radical scavenging activities and ORAC values. GA showed the strongest antioxidant activity. Antitumor activities significantly increased in a dose-dependent manner. In particular, the CGC had growth inhibitory activities of 94.86, 87.27 and 67.13 % against the human colon (CACO-2), hepatocellular (HepG2) and breast (MCF-7) carcinoma cell lines, respectively, at the highest concentration of 400 μg/mL of the extracts. These results suggest that the three compounds are key chemical compositions valuable for preparing functional foods in the food industry.

Conclusions

The results suggested that SBM is a natural source of antioxidant and antitumor agents for preparing functional foods.

【 授权许可】

   
2015 Chen et al.

【 预 览 】
附件列表
Files Size Format View
20150908020508296.pdf 1147KB PDF download
Fig. 6. 54KB Image download
Fig. 5. 50KB Image download
Fig. 4. 15KB Image download
Fig. 3. 26KB Image download
Fig. 2. 27KB Image download
Fig. 1. 48KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]McDill BM. Beet Sugar Industry. Ind Eng Chem. 1947;39(5):657–69.
  • [2]Balbach JK. The effect of ownership on contract structure, costs, and quality: the case of the U.S. beet sugar industry. In: Royer JS, Rogers RT (eds). The industrialization of agriculture: vertical coordination in the U.S. food system. Aldershot, United Kingdom: Ashgate Publishing Ltd.; 1998. p. 155–184.
  • [3]Roukas T. Ethanol production from non-sterilized beet molasses by free and immobilized < i > Saccharomyces cerevisiae cells using fed-batch culture. J Food Eng. 1996; 27(1):87-96.
  • [4]Ahmedna M, Marshall W, Rao R. Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour Technol. 2000; 71(2):113-123.
  • [5]Paturau JM. By-products of the cane sugar industry. An introduction to their industrial utilization. Amsterdam: Elsevier Science Publishers BV; 1989.
  • [6]Filipčev B, Lević L, Bodroža-Solarov M, Mišljenović N, Koprivica G. Quality characteristics and antioxidant properties of breads supplemented with sugar beet molasses-based ingredients. Int J Food Prop. 2010; 13(5):1035-1053.
  • [7]Koprivica G, Mišljenović N, Lević L, Kuljanin T. Influence of the nutrients present in sugar beet molasses and saccharose solutions on the quality of osmodehydrated carrot. Časopis za procesnu tehniku i energetiku u poljoprivredi/PTEP. 2009; 13(2):184-187.
  • [8]Paananen H, Kuisma J. Chromatographic separation of molasses components. Zuckerindustrie. 2000; 125(12):978-981.
  • [9]Valli V, Gómez-Caravaca AM, Di Nunzio M, Danesi F, Caboni MF, Bordoni A. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. J Agric Food Chem. 2012; 60(51):12508-12515.
  • [10]Khadem S, Marles RJ. Monocyclic phenolic acids; Hydroxy- and polyhydroxybenzoic acids: Occurrence and recent bioactivity studies. Molecules. 2010; 15(11):7985-8005.
  • [11]Liu X, Zhao M, Wu K, Chai X, Yu H, Tao Z, Wang J. Immunomodulatory and anticancer activities of phenolics from emblica fruit (Phyllantlius emblica L.). Food Chem. 2012; 131(2):685-690.
  • [12]Pereira DM, Valentao P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009; 14(6):2202-2211.
  • [13]Vineetha VP, Girija S, Soumya RS, Raghu KG. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity. Food Funct. 2014; 5(3):502-511.
  • [14]Wu L-C, Jou AF-J, Chen S-H, Tien C-Y, Cheng C-F, Fan N-C, Ho J-aA. Antioxidant, anti-inflammatory and anti-browning activities of hot water extracts of oriental herbal teas. Food Funct. 2010; 1(2):200-208.
  • [15]Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med. 2012;12:173.
  • [16]Gomaa EZ. In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci Biotechnol. 2013; 22(2):455-463.
  • [17]Luo A, He X, Zhou S, Fan Y, Luo A, Chun Z. Purification, composition analysis and antioxidant activity of the polysaccharides from < i > Dendrobium nobile Lindl. Carbohydr Polym. 2010; 79(4):1014-1019.
  • [18]Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006; 19(6):669-675.
  • [19]Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9):1231-1237.
  • [20]Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem. 2002; 50(11):3122-3128.
  • [21]Zhou J-J, Yue X-F, Han J-X, Yang W-Y. Improved MTT assay for activity of antitumor agents. Chin J Pharm. 1993; 24:455-457.
  • [22]Werner I, Bacher A, Eisenreich W. Retrobiosynthetic NMR studies with C-13-labeled glucose - Formation of gallic acid in plants and fungi. J Biol Chem. 1997; 272(41):25474-25482.
  • [23]Fernandes A, Ivanova G, Bras NF, Mateus N, Ramos MJ, Rangel M, de Freitas V. Structural characterization of inclusion complexes between cyanidin-3-0-glucoside and beta-cyclodextrin. Carbohydr Polym. 2014; 102:269-277.
  • [24]Cren-Olive C, Wieruszeski JM, Maes E, Rolando C. Catechin and epicatechin deprotonation followed by C-13 NMR. Tetrahedron Lett. 2002; 43(25):4545-4549.
  • [25]Berregi I, Santos JI, del Campo G, Miranda JI. Quantitative determination of (−)-epicatechin in cider apple juices by H-1 NMR. Talanta. 2003; 61(2):139-145.
  • [26]Panyathep A, Chewonarin T, Taneyhill K, Vinitketkumnuen U. Antioxidant and anti-matrix metalloproteinases activities of dried longan (Euphoria longana) seed extract. Scienceasia. 2013; 39(1):12-18.
  • [27]Othman A, Jalil AMM, Weng KK, Ismail A, Abd Ghani N, Adenan I. Epicatechin content and antioxidant capacity of cocoa beans from four different countries. Afr J Biotechnol. 2010; 9(7):1052-1059.
  • [28]Feng J-Y, Liu Z-Q. Phenolic and enolic hydroxyl groups in curcumin: Which plays the major role in scavenging radicals? J Agric Food Chem. 2009; 57(22):11041-11046.
  • [29]Sroka Z, Cisowski W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol. 2003; 41(6):753-758.
  • [30]Vulic JJ, Cebovic TN, Canadanovic VM, Cetkovic GS, Djilas SM, Canadanovic-Brunet JM, Velicanski AS, Cvetkovic DD, Tumbas VT. Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food Funct. 2013; 4(5):713-721.
  • [31]Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1):44-84.
  • [32]Wang K, Zhu X, Zhang K, Zhu L, Zhou F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol. 2014; 28(9):387-393.
  • [33]Filipiak K, Hidalgo M, Manuel Silvan J, Fabre B, Carbajo RJ, Pineda-Lucena A, Ramos A, de Pascual-Teresa B, de Pascual-Teresa S. Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food Funct. 2014; 5(2):381-389.
  • [34]Xu M, Bower KA, Wang SY, Frank JA, Chen G, Ding M, Wang SO, Shi XL, Ke ZJ, Luo J. Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Mol Cancer. 2010; 9:285. BioMed Central Full Text
  • [35]Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncology Letters. 2013; 6(6):1749-1755.
  • [36]Siddique HR, Liao DJ, Mishra SK, Schuster T, Wang L, Matter B, Campbell PM, Villalta P, Nanda S, Deng Y et al.. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int J Cancer. 2012; 131(7):1720-1731.
  文献评价指标  
  下载次数:37次 浏览次数:19次