期刊论文详细信息
BMC Immunology
Subversion of the B-cell compartment during parasitic, bacterial, and viral infections
Yolande Richard1  Gwenoline Borhis1 
[1] Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
关键词: Parasite;    Virus;    B-reg;    BAFF;    MZ B-cells;    Memory B cells;   
Others  :  1149079
DOI  :  10.1186/s12865-015-0079-y
 received in 2014-10-07, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions.

【 授权许可】

   
2015 Borhis and Richard; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405020850793.pdf 797KB PDF download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Vinuesa CG, Chang PP. Innate B cell helpers reveal novel types of antibody responses. Nat Immunol. 2013; 14(2):119-26.
  • [2]Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013; 13(2):118-32.
  • [3]Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F et al.. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol. 2012; 13:63.
  • [4]Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annu Rev Immunol. 2009; 27:267-85.
  • [5]Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L et al.. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014; 15(4):354-64.
  • [6]Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010; 10(4):236-47.
  • [7]Mauri C, Ehrenstein MR. The ‘short’ history of regulatory B cells. Trends Immunol. 2008; 29(1):34-40.
  • [8]DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010; 1183:38-57.
  • [9]Siewe B, Stapleton JT, Martinson J, Keshavarzian A, Kazmi N, Demarais PM et al.. Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8(+) T cell function in vitro. J Leukoc Biol. 2013; 93(5):811-8.
  • [10]Das A, Ellis G, Pallant C, Lopes AR, Khanna P, Peppa D et al.. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol. 2012; 189(8):3925-35.
  • [11]Schneider K, Loewendorf A, De Trez C, Fulton J, Rhode A, Shumway H et al.. Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe. 2008; 3(2):67-76.
  • [12]Moseman EA, Iannacone M, Bosurgi L, Tonti E, Chevrier N, Tumanov A et al.. B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity. 2012; 36(3):415-26.
  • [13]Castro-Eguiluz D, Pelayo R, Rosales-Garcia V, Rosales-Reyes R, Alpuche-Aranda C, Ortiz-Navarrete V. B cell precursors are targets for Salmonella infection. Microb Pathog. 2009; 47(1):52-6.
  • [14]McElroy DS, Ashley TJ, D’Orazio SE. Lymphocytes serve as a reservoir for Listeria monocytogenes growth during infection of mice. Microb Pathog. 2009; 46(4):214-21.
  • [15]Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001; 1(1):75-82.
  • [16]Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991; 21(12):2951-62.
  • [17]Nutt SL, Tarlinton DM. Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol. 2011; 12(6):472-7.
  • [18]McHeyzer-Williams LJ, Pelletier N, Mark L, Fazilleau N, McHeyzer-Williams MG. Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol. 2009; 21(3):266-73.
  • [19]Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011; 29:621-63.
  • [20]Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME et al.. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 2004; 104(12):3647-54.
  • [21]GarciadeVinuesa C, O’Leary P, Sze DM, Toellner KM, MacLennan IC. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur J Immunol. 1999; 29(4):1314-23.
  • [22]Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine. 2003; 21 Suppl 2:S55-60.
  • [23]Bekeredjian-Ding I, Inamura S, Giese T, Moll H, Endres S, Sing A et al.. Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. J Immunol. 2007; 178(5):2803-12.
  • [24]Artz AS, Ershler WB, Longo DL. Pneumococcal vaccination and revaccination of older adults. Clin Microbiol Rev. 2003; 16(2):308-18.
  • [25]Giebink GS. The prevention of pneumococcal disease in children. N Engl J Med. 2001; 345(16):1177-83.
  • [26]Overturf GD. Pneumococcal vaccination of children. Semin Pediatr Infect Dis. 2002; 13(3):155-64.
  • [27]Timens W, Boes A, Rozeboom-Uiterwijk T, Poppema S. Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J Immunol. 1989; 143(10):3200-6.
  • [28]Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005; 175(5):3262-7.
  • [29]You Y, Myers RC, Freeberg L, Foote J, Kearney JF, Justement LB et al.. Marginal zone B cells regulate antigen capture by marginal zone macrophages. J Immunol. 2011; 186(4):2172-81.
  • [30]You Y, Zhao H, Wang Y, Carter RH. Cutting edge: primary and secondary effects of CD19 deficiency on cells of the marginal zone. J Immunol. 2009; 182(12):7343-7.
  • [31]Cinamon G, Zachariah MA, Lam OM, Foss FW, Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008; 9(1):54-62.
  • [32]Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med. 2011; 208(1):67-80.
  • [33]Perez-Andres M, Grosserichter-Wagener C, Teodosio C, van Dongen JJ, Orfao A, van Zelm MC. The nature of circulating CD27+CD43+ B cells. J Exp Med. 2011; 208(13):2565-6.
  • [34]Verbinnen B, Covens K, Moens L, Meyts I, Bossuyt X. Human CD20+CD43+CD27+CD5- B cells generate antibodies to capsular polysaccharides of Streptococcus pneumoniae. J Allergy Clin Immunol. 2012; 130(1):272-5.
  • [35]Scholzen A, Sauerwein RW. How malaria modulates memory: activation and dysregulation of B cells in Plasmodium infection. Trends Parasitol. 2013; 29(5):252-62.
  • [36]Asito AS, Piriou E, Jura WG, Ouma C, Odada PS, Ogola S et al.. Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya. Malar J. 2011; 10:362.
  • [37]Cunnington AJ, Riley EM. Suppression of vaccine responses by malaria: insignificant or overlooked? Expert Rev Vaccines. 2010; 9(4):409-29.
  • [38]Requena P, Campo JJ, Umbers AJ, Ome M, Wangnapi R, Barrios D et al.. Pregnancy and malaria exposure are associated with changes in the B cell pool and in plasma eotaxin levels. J Immunol. 2014; 193(6):2971-83.
  • [39]Nduati E, Gwela A, Karanja H, Mugyenyi C, Langhorne J, Marsh K et al.. The plasma concentration of the B cell activating factor is increased in children with acute malaria. J Infect Dis. 2011; 204(6):962-70.
  • [40]Scholzen A, Teirlinck AC, Bijker EM, Roestenberg M, Hermsen CC, Hoffman SL et al.. BAFF and BAFF receptor levels correlate with B cell subset activation and redistribution in controlled human malaria infection. J Immunol. 2014; 192(8):3719-29.
  • [41]Jeong YI, Hong SH, Cho SH, Lee WJ, Lee SE. Induction of IL-10-producing CD1dhighCD5+ regulatory B cells following Babesia microti-infection. PLoS One. 2012; 7(10):e46553.
  • [42]Yang M, Sun L, Wang S, Ko KH, Xu H, Zheng BJ et al.. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J Immunol. 2010; 184(7):3321-5.
  • [43]Kumsiri R, Potup P, Chotivanich K, Petmitr S, Kalambaheti T, Maneerat Y. Blood stage Plasmodium falciparum antigens induce T cell independent immunoglobulin production via B cell activation factor of the TNF family (BAFF) pathway. Acta Trop. 2010; 116(3):217-26.
  • [44]Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B et al.. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol. 2009; 183(3):2176-82.
  • [45]Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE et al.. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. J Exp Med. 2013; 210(2):389-99.
  • [46]Weiss GE, Clark EH, Li S, Traore B, Kayentao K, Ongoiba A et al.. A positive correlation between atypical memory B cells and Plasmodium falciparum transmission intensity in cross-sectional studies in Peru and Mali. PLoS One. 2011; 6(1):e15983.
  • [47]Portugal S, Doumtabe D, Traore B, Miller LH, Troye-Blomberg M, Doumbo OK et al.. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar J. 2012; 11:162.
  • [48]Ehrhardt GR, Davis RS, Hsu JT, Leu CM, Ehrhardt A, Cooper MD. The inhibitory potential of Fc receptor homolog 4 on memory B cells. Proc Natl Acad Sci U S A. 2003; 100(23):13489-94.
  • [49]Ehrhardt GR, Hsu JT, Gartland L, Leu CM, Zhang S, Davis RS et al.. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med. 2005; 202(6):783-91.
  • [50]Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA et al.. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med. 2008; 205(8):1797-805.
  • [51]Sohn HW, Krueger PD, Davis RS, Pierce SK. FcRL4 acts as an adaptive to innate molecular switch dampening BCR signaling and enhancing TLR signaling. Blood. 2011; 118(24):6332-41.
  • [52]Shio MT, Kassa FA, Bellemare MJ, Olivier M. Innate inflammatory response to the malarial pigment hemozoin. Microbes and infection/Institut Pasteur. 2010; 12(12–13):889-99.
  • [53]Chaoul N, Burelout C, Peruchon S, van Buu BN, Laurent P, Proust A et al.. Default in plasma and intestinal IgA responses during acute infection by simian immunodeficiency virus. Retrovirology. 2012; 9:43.
  • [54]Fontaine J, Chagnon-Choquet J, Valcke HS, Poudrier J, Roger M, Montreal Primary HIVI et al.. High expression levels of B lymphocyte stimulator (BLyS) by dendritic cells correlate with HIV-related B-cell disease progression in humans. Blood. 2011; 117(1):145-55.
  • [55]Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol. 2011; 11(6):375-88.
  • [56]Everts B, Adegnika AA, Kruize YC, Smits HH, Kremsner PG, Yazdanbakhsh M. Functional impairment of human myeloid dendritic cells during Schistosoma haematobium infection. PLoS Negl Trop Dis. 2010; 4(4):e667.
  • [57]Labuda LA, Ateba-Ngoa U, Feugap EN, Heeringa JJ, van der Vlugt LE, Pires RB et al.. Alterations in peripheral blood B cell subsets and dynamics of B cell responses during human schistosomiasis. PLoS Negl Trop Dis. 2013; 7(3):e2094.
  • [58]van der Vlugt LE, Labuda LA, Ozir-Fazalalikhan A, Lievers E, Gloudemans AK, Liu KY et al.. Schistosomes induce regulatory features in human and mouse CD1d(hi) B cells: inhibition of allergic inflammation by IL-10 and regulatory T cells. PLoS One. 2012; 7(2):e30883.
  • [59]van der Vlugt LE, Zinsou JF, Ozir-Fazalalikhan A, Kremsner PG, Yazdanbakhsh M, Adegnika AA, Smits HH: Interleukin 10 (IL-10)-Producing CD1dhi Regulatory B Cells From Schistosoma Haematobium-Infected Individuals Induce IL-10-Positive T Cells and Suppress Effector T-Cell Cytokines. The Journal of infectious diseases. 2014. 210(8):1207-16
  • [60]Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LV et al.. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol. 2009; 183(10):6639-45.
  • [61]Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al.. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007; 8(4):369-77.
  • [62]Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K et al.. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010; 184(8):4414-22.
  • [63]Maglione PJ, Chan J. How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol. 2009; 39(3):676-86.
  • [64]Zhang M, Wang Z, Graner MW, Yang L, Liao M, Yang Q et al.. B cell infiltration is associated with the increased IL-17 and IL-22 expression in the lungs of patients with tuberculosis. Cell Immunol. 2011; 270(2):217-23.
  • [65]Zhang M, Zheng X, Zhang J, Zhu Y, Zhu X, Liu H et al.. CD19(+)CD1d(+)CD5(+) B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cell Immunol. 2012; 274(1–2):89-97.
  • [66]Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J et al.. B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. J Immunol. 2009; 182(12):7473-81.
  • [67]Nanton MR, Way SS, Shlomchik MJ, McSorley SJ. Cutting edge: B cells are essential for protective immunity against Salmonella independent of antibody secretion. J Immunol. 2012; 189(12):5503-7.
  • [68]Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E et al.. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014; 507(7492):366-70.
  • [69]Malaspina A, Moir S, Kottilil S, Hallahan CW, Ehler LA, Liu S et al.. Deleterious effect of HIV-1 plasma viremia on B cell costimulatory function. J Immunol. 2003; 170(12):5965-72.
  • [70]Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol. 2009; 9(4):235-45.
  • [71]Titanji K, Chiodi F, Bellocco R, Schepis D, Osorio L, Tassandin C et al.. Primary HIV-1 infection sets the stage for important B lymphocyte dysfunctions. Aids. 2005; 19(17):1947-55.
  • [72]Amadori A, Chieco-Bianchi L. B-cell activation and HIV-1 infection: deeds and misdeeds. Immunol Today. 1990; 11(10):374-9.
  • [73]Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1983; 309(8):453-8.
  • [74]Muller F, Froland SS, Brandtzaeg P. Altered IgG-subclass distribution in lymph node cells and serum of adults infected with human immunodeficiency virus (HIV). Clin Exp Immunol. 1989; 78(2):153-8.
  • [75]Bonsignori M, Alam SM, Liao HX, Verkoczy L, Tomaras GD, Haynes BF et al.. HIV-1 antibodies from infection and vaccination: insights for guiding vaccine design. Trends Microbiol. 2012; 20(11):532-9.
  • [76]Kobie JJ, Alcena DC, Zheng B, Bryk P, Mattiacio JL, Brewer M et al.. 9G4 autoreactivity is increased in HIV-infected patients and correlates with HIV broadly neutralizing serum activity. PLoS One. 2012; 7(4):e35356.
  • [77]Hart M, Steel A, Clark SA, Moyle G, Nelson M, Henderson DC et al.. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J Immunol. 2007; 178(12):8212-20.
  • [78]Titanji K, De Milito A, Cagigi A, Thorstensson R, Grutzmeier S, Atlas A et al.. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood. 2006; 108(5):1580-7.
  • [79]Peruchon S, Chaoul N, Burelout C, Delache B, Brochard P, Laurent P et al.. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection. PLoS One. 2009; 4(6):e5966.
  • [80]He B, Qiao X, Klasse PJ, Chiu A, Chadburn A, Knowles DM et al.. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J Immunol. 2006; 176(7):3931-41.
  • [81]Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009; 182(2):890-901.
  • [82]Titanji K, Velu V, Chennareddi L, Vijay-Kumar M, Gewirtz AT, Freeman GJ et al.. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J Clin Invest. 2010; 120(11):3878-90.
  • [83]Kardava L, Moir S, Wang W, Ho J, Buckner CM, Posada JG et al.. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J Clin Invest. 2011; 121(7):2614-24.
  • [84]Jelicic K, Cimbro R, Nawaz F, da Huang W, Zheng X, Yang J et al.. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-beta1 production and FcRL4 expression. Nat Immunol. 2013; 14(12):1256-65.
  • [85]Legendre C, Raphael M, Gras G, Lefevre EA, Feuillard J, Dormont D et al.. CD80 expression is decreased in hyperplastic lymph nodes of HIV+ patients. Int Immunol. 1998; 10(12):1847-51.
  • [86]Badr G, Borhis G, Treton D, Moog C, Garraud O, Richard Y. HIV type 1 glycoprotein 120 inhibits human B cell chemotaxis to CXC chemokine ligand (CXCL) 12, CC chemokine ligand (CCL)20, and CCL21. J Immunol. 2005; 175(1):302-10.
  • [87]Tenner-Racz K, Stellbrink HJ, van Lunzen J, Schneider C, Jacobs JP, Raschdorff B et al.. The unenlarged lymph nodes of HIV-1-infected, asymptomatic patients with high CD4 T cell counts are sites for virus replication and CD4 T cell proliferation. The impact of highly active antiretroviral therapy. J Exp Med. 1998; 187(6):949-59.
  • [88]Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza M, Gantt K et al.. Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev. 1994; 140:105-30.
  • [89]Levesque MC, Moody MA, Hwang KK, Marshall DJ, Whitesides JF, Amos JD et al.. Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection. PLoS Med. 2009; 6(7):e1000107.
  • [90]Zhang ZQ, Casimiro DR, Schleif WA, Chen M, Citron M, Davies ME et al.. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection. Virology. 2007; 361(2):455-64.
  • [91]Hong JJ, Amancha PK, Rogers K, Ansari AA, Villinger F. Spatial alterations between CD4(+) T follicular helper, B, and CD8(+) T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J Immunol. 2012; 188(7):3247-56.
  • [92]Lindqvist M, van Lunzen J, Soghoian DZ, Kuhl BD, Ranasinghe S, Kranias G et al.. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest. 2012; 122(9):3271-80.
  • [93]Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK et al.. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013; 210(1):143-56.
  • [94]Petrovas C, Yamamoto T, Gerner MY, Boswell KL, Wloka K, Smith EC et al.. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest. 2012; 122(9):3281-94.
  • [95]Yue FY, Lo C, Sakhdari A, Lee EY, Kovacs CM, Benko E et al.. HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J Immunol. 2010; 185(1):498-506.
  • [96]Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC et al.. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol. 2009; 10(9):1008-17.
  • [97]Lefevre EA, Krzysiek R, Loret EP, Galanaud P, Richard Y. Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. J Immunol. 1999; 163(3):1119-22.
  • [98]Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA et al.. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci U S A. 2006; 103(7):2262-7.
  • [99]Stohl W, Cheema GS, Briggs WS, Xu D, Sosnovtseva S, Roschke V et al.. B lymphocyte stimulator protein-associated increase in circulating autoantibody levels may require CD4+ T cells: lessons from HIV-infected patients. Clin Immunol. 2002; 104(2):115-22.
  • [100]Richard Y, Amiel C, Jeantils V, Mestivier D, Portier A, Dhello G et al.. Changes in blood B cell phenotypes and Epstein-Barr virus load in chronically human immunodeficiency virus-infected patients before and after antiretroviral therapy. J Infect Dis. 2010; 202(9):1424-34.
  • [101]Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol. 2013; 23(6):457-67.
  • [102]Pestka JM, Zeisel MB, Blaser E, Schurmann P, Bartosch B, Cosset FL et al.. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci U S A. 2007; 104(14):6025-30.
  • [103]Herkel J, Carambia A. Let it B in viral hepatitis? J Hepatol. 2011; 55(1):5-7.
  • [104]Chen M, Sallberg M, Sonnerborg A, Weiland O, Mattsson L, Jin L et al.. Limited humoral immunity in hepatitis C virus infection. Gastroenterology. 1999; 116(1):135-43.
  • [105]Doi H, Iyer TK, Carpenter E, Li H, Chang KM, Vonderheide RH et al.. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology. 2012; 55(3):709-19.
  • [106]Doi H, Tanoue S, Kaplan DE. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte population in hepatitis C cirrhosis. Clin Immunol. 2014; 150(2):184-91.
  • [107]Oliviero B, Cerino A, Varchetta S, Paudice E, Pai S, Ludovisi S et al.. Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections. J Hepatol. 2011; 55(1):53-60.
  • [108]Ducoulombier D, Roque-Afonso AM, Di Liberto G, Penin F, Kara R, Richard Y et al.. Frequent compartmentalization of hepatitis C virus variants in circulating B cells and monocytes. Hepatology. 2004; 39(3):817-25.
  • [109]Ito M, Kusunoki H, Mizuochi T. Peripheral B cells as reservoirs for persistent HCV infection. Front Microbiol. 2011; 2:177.
  • [110]Toubi E, Gordon S, Kessel A, Rosner I, Rozenbaum M, Shoenfeld Y et al.. Elevated serum B-Lymphocyte activating factor (BAFF) in chronic hepatitis C virus infection: association with autoimmunity. J Autoimmun. 2006; 27(2):134-9.
  • [111]Lee BO, Tucker A, Frelin L, Sallberg M, Jones J, Peters C et al.. Interaction of the hepatitis B core antigen and the innate immune system. J Immunol. 2009; 182(11):6670-81.
  文献评价指标  
  下载次数:2次 浏览次数:2次