期刊论文详细信息
BMC Cancer
Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients
Liesbeth Hameetman2  Suzan Commandeur2  Jan Nico Bouwes Bavinck2  Hermina C Wisgerhof2  Frank R de Gruijl2  Rein Willemze2  Leon Mullenders1  Cornelis P Tensen2  Harry Vrieling1 
[1] Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, the Netherlands
[2] Department of Dermatology, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, the Netherlands
关键词: Genomic profiling;    Gene expression;    Organ transplant recipient;    Actinic keratosis;    Non-melanoma skin cancer;    Cutaneous squamous cell carcinoma;   
Others  :  1079932
DOI  :  10.1186/1471-2407-13-58
 received in 2012-10-16, accepted in 2013-01-30,  发布年份 2013
PDF
【 摘 要 】

Background

The risk of developing cutaneous squamous cell carcinoma (SCC) is markedly increased in organ transplant recipients (OTRs) compared to the normal population. Next to sun exposure, the immunosuppressive regimen is an important risk factor for the development of SCC in OTRs. Various gene mutations (e.g. TP53) and genetic alterations (e.g. loss of CDKN2A, amplification of RAS) have been found in SCCs. The aim of this genome-wide study was to identify pathways and genomic alterations that are consistently involved in the formation of SCCs and their precursor lesions, actinic keratoses (AKs).

Methods

To perform the analysis in an isogenic background, RNA and DNA were isolated from SCC, AK and normal (unexposed) epidermis (NS) from each of 13 OTRs. Samples were subjected to genome-wide expression analysis and genome SNP analysis using Illumina’s HumanWG-6 BeadChips and Infinium II HumanHap550 Genotyping BeadChips, respectively. mRNA expression results were verified by quantitative PCR.

Results

Hierarchical cluster analysis of mRNA expression profiles showed SCC, AK and NS samples to separate into three distinct groups. Several thousand genes were differentially expressed between epidermis, AK and SCC; most upregulated in SCCs were hyperproliferation related genes and stress markers, such as keratin 6 (KRT6), KRT16 and KRT17. Matching to oncogenic pathways revealed activation of downstream targets of RAS and cMYC in SCCs and of NFκB and TNF already in AKs. In contrast to what has been reported previously, genome-wide SNP analysis showed very few copy number variations in AKs and SCCs, and these variations had no apparent relationship with observed changes in mRNA expression profiles.

Conclusion

Vast differences in gene expression profiles exist between SCC, AK and NS from immunosuppressed OTRs. Moreover, several pathways activated in SCCs were already activated in AKs, confirming the assumption that AKs are the precursor lesions of SCCs. Since the drastic changes in gene expression appeared unlinked to specific genomic gains or losses, the causal events driving SCC development require further investigation. Other molecular mechanisms, such as DNA methylation or miRNA alterations, may affect gene expression in SCCs of OTRs. Further study is required to identify the mechanisms of early activation of NFκB and TNF, and to establish whether these pathways offer a feasible target for preventive intervention among OTRs.

【 授权许可】

   
2013 Hameetman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202213544472.pdf 2302KB PDF download
Figure 5. 60KB Image download
Figure 4. 185KB Image download
Figure 3. 51KB Image download
Figure 2. 77KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B, Siskind V, van ver Woude FJ, Hardie IR: The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation 1996, 61:715-721.
  • [2]Bordea C, Wojnarowska F, Millard PR, Doll H, Welsh K, Morris PJ: Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004, 77:574-579.
  • [3]Fortina AB, Piaserico S, Caforio AL, Abeni D, Alaibac M, Angelini A, Iliceto S, Peserico A: Immunosuppressive level and other risk factors for basal cell carcinoma and squamous cell carcinoma in heart transplant recipients. Arch Dermatol 2004, 140:1079-1085.
  • [4]Glover MT, Deeks JJ, Raftery MJ, Cunningham J, Leigh IM: Immunosuppression and risk of non-melanoma skin cancer in renal transplant recipients. Lancet 1997, 349:398.
  • [5]Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J: A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 1991, 88:10124-10128.
  • [6]Ullrich SE: Mechanisms underlying UV-induced immune suppression. Mutat Res 2005, 571:185-205.
  • [7]Proby CM, Harwood CA, Neale RE, Green AC, Euvrard S, Naldi L, Tessari G, Feltkamp MC, de Koning MN, Quint WG, et al.: A case–control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. Am J Transplant 2011, 11:1498-1508.
  • [8]Nindl I, Gottschling M, Stockfleth E: Human papillomaviruses and non-melanoma skin cancer: Basic virology and clinical manifestations. Dis Markers 2007, 23:247-259.
  • [9]Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL: Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol 2011, 131:1745-1753.
  • [10]Ko CJ: Actinic keratosis: facts and controversies. Clin Dermatol 2010, 28:249-253.
  • [11]McGregor JM, Berkhout RJ, Rozycka M, ter Schegget J, Rozycka M, Bouwes Bavinck JN, Crook T: p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene 1997, 15:1737-1740.
  • [12]Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE: Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 1996, 93:14025-14029.
  • [13]Rebel H, Mosnier LO, Berg RJ, Westerman-de Vries A, van Steeg H, van Kranen HJ, de de Gruijl HJ: Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency, and p53 heterozygosity. Cancer Res 2001, 61:977-983.
  • [14]de Graaf YG, Rebel H, Elghalbzouri A, Cramers P, Nellen RG, Willemze R, Bouwes Bavinck JN, de Gruijl FR: More epidermal p53 patches adjacent to skin carcinomas in renal transplant recipients than in immunocompetent patients: the role of azathioprine. Exp Dermatol 2008, 17:349-355.
  • [15]Boukamp P: Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005, 26:1657-1667.
  • [16]Tsang DK, Crowe DL: The mitogen activated protein kinase pathway is required for proliferation but not invasion of human squamous cell carcinoma lines. Int J Oncol 1999, 15:519-523.
  • [17]Ashton KJ, Weinstein SR, Maguire DJ, Griffiths LR: Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol 2003, 139:876-882.
  • [18]Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M, Kelsell DP, Leigh IM, Harwood CA, Proby CM, et al.: Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer 2007, 46:661-669.
  • [19]Purdie KJ, Harwood CA, Gulati A, Chaplin T, Lambert SR, Cerio R, Kelly GP, Cazier JB, Young BD, Leigh IM, et al.: Single nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol 2009, 129:1562-1568.
  • [20]Rehman I, Takata M, Wu YY, Rees JL: Genetic change in actinic keratoses. Oncogene 1996, 12:2483-2490.
  • [21]van Haren R, Feldman D, Sinha AA: Systematic comparison of nonmelanoma skin cancer microarray datasets reveals lack of consensus genes. Br J Dermatol 2009, 161:1278-1287.
  • [22]Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF: Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog 2010, 49:619-629.
  • [23]Padilla RS, Sebastian S, Jiang Z, Nindl I, Larson R: Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: a spectrum of disease progression. Arch Dermatol 2010, 146:288-293.
  • [24]Ra SH, Li X, Binder S: Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol 2011, 24:963-973.
  • [25]Hofbauer GF, Bouwes Bavinck JN, Euvrard S: Organ transplantation and skin cancer: basic problems and new perspectives. Exp Dermatol 2010, 19:473-482.
  • [26]Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH: A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 2003, 63:1727-1730.
  • [27]Sudarshan S, Linehan WM, Neckers L: HIF and fumarate hydratase in renal cancer. Br J Cancer 2007, 96:403-407.
  • [28]Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, Lucin K, Kahnoski R, Yang XJ, Teh BT: Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res 2007, 67:3171-3176.
  • [29]Gugasyan R, Voss A, Varigos G, Thomas T, Grumont RJ, Kaur P, Grigoriadis G, Gerondakis S: The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol Cell Biol 2004, 24:5733-5745.
  • [30]Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, et al.: Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res 2004, 64:6511-6523.
  • [31]Rittie L, Kansra S, Stoll SW, Li Y, Gudjonsson JE, Shao Y, Michael LE, Fisher GJ, Johnson TM, Elder JT: Differential ErbB1 signaling in squamous cell versus basal cell carcinoma of the skin. Am J Pathol 2007, 170:2089-2099.
  • [32]Commandeur S, van Drongelen V, de Gruijl FR, Ghalbzouri AE: Epidermal growth factor receptor activation and inhibition in 3D in vitro models of normal skin and human cutaneous squamous cell carcinoma. Cancer Sci 2012, 103:2120-2126.
  • [33]Pivarcsi A, Muller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, et al.: Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci USA 2007, 104:19055-19060.
  • [34]Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, et al.: CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 1999, 96:14470-14475.
  • [35]Commandeur S, de Gruijl FR, Willemze R, Tensen CP, El Ghalbzouri A: An in vitro three-dimensional model of primary human cutaneous squamous cell carcinoma. Exp Dermatol 2009, 18:849-856.
  • [36]Son KD, Kim TJ, Lee YS, Park GS, Han KT, Lim JS, Kang CS: Comparative analysis of immunohistochemical markers with invasiveness and histologic differentiation in squamous cell carcinoma and basal cell carcinoma of the skin. J Surg Oncol 2008, 97:615-620.
  • [37]Tsukifuji R, Tagawa K, Hatamochi A, Shinkai H: Expression of matrix metalloproteinase-1, -2 and −3 in squamous cell carcinoma and actinic keratosis. Br J Cancer 1999, 80:1087-1091.
  • [38]Chebassier N, Leroy S, Tenaud I, Knol AC, Dreno B: Overexpression of MMP-2 and MMP-9 in squamous cell carcinomas of immunosuppressed patients. Arch Dermatol Res 2002, 294:124-126.
  • [39]Ahmed ST, Darnell JE Jr: Serpin B3/B4, activated by STAT3, promote survival of squamous carcinoma cells. Biochem Biophys Res Commun 2009, 378:821-825.
  • [40]Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, et al.: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006, 16:1136-1148.
  • [41]Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al.: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467:1114-1117.
  • [42]Ashton KJ, Carless MA, Griffiths LR: Cytogenetic alterations in nonmelanoma skin cancer: a review. Genes Chromosomes Cancer 2005, 43:239-248.
  • [43]Rehman I, Quinn AG, Takata M, Taylor AE, Rees JL: Low frequency of allelic loss in skin tumours from immunosuppressed individuals. Br J Cancer 1997, 76:757-759.
  • [44]O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, McGregor JM, Walker SL, Hanaoka F, Karran P: Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005, 309:1871-1874.
  • [45]Wisgerhof HC, van der Geest LG, de Fijter JW, Haasnoot GW, Claas FH, le Cessie S, Willemze R, Bouwes Bavinck JN: Incidence of cancer in kidney-transplant recipients: a long-term cohort study in a single center. Cancer Epidemiol 2011, 35:105-111.
  • [46]Breuninger H, Black B, Rassner G: Microstaging of squamous cell carcinomas. Am J Clin Pathol 1990, 94:624-627.
  • [47]Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988, 16:1215.
  • [48]Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008, 24:1547-1548.
  • [49]Lin SM, Du P, Huber W, Kibbe WA: Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 2008, 36:e11.
  • [50]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [51]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [52]Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, Wasserman WW: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res 2005, 33:3154-3164.
  • [53]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [54]Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
  • [55]Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8:R19. BioMed Central Full Text
  文献评价指标  
  下载次数:34次 浏览次数:11次