期刊论文详细信息
BMC Microbiology
Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism
Philippe Mazodier2  Jean-Yves Coppée1  Myriam Gominet2  Caroline Proux1  Nadia Benaroudj3  Aurélie Guyet2 
[1] Plateforme Transcriptome et Epigenome (PF2), 28 rue du Docteur Roux, 75724 Paris Cedex 15, France;Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, CNRS URA 2172, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France;Unité Biologie des Spirochètes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
关键词: Coelichelin;    cchB;    CYP105D5;    hyaS;    ramR;    bldA;    AdpA;    Microarrays;    lividans;    Streptomyces;   
Others  :  1141532
DOI  :  10.1186/1471-2180-14-81
 received in 2013-11-08, accepted in 2014-03-27,  发布年份 2014
PDF
【 摘 要 】

Background

AdpA is a key transcriptional regulator involved in the complex growth cycle of Streptomyces. Streptomyces are Gram-positive bacteria well-known for their production of secondary metabolites and antibiotics. Most work on AdpA has been in S. griseus, and little is known about the pathways it controls in other Streptomyces spp. We recently discovered interplay between ClpP peptidases and AdpA in S. lividans. Here, we report the identification of genes directly regulated by AdpA in S. lividans.

Results

Microarray experiments revealed that the expression of hundreds of genes was affected in a S. lividans adpA mutant during early stationary phase cultures in YEME liquid medium. We studied the expression of the S. lividans AdpA-regulated genes by quantitative real-time PCR analysis after various times of growth. In silico analysis revealed the presence of potential AdpA-binding sites upstream from these genes; electrophoretic mobility shift assays indicated that AdpA binds directly to their promoter regions. This work identifies new pathways directly controlled by AdpA and that are involved in S. lividans development (ramR, SLI7885 also known as hyaS and SLI6586), and primary (SLI0755-SLI0754 encoding CYP105D5 and Fdx4) or secondary (cchA, cchB, and hyaS) metabolism.

Conclusions

We characterised six S. lividans AdpA-dependent genes whose expression is directly activated by this pleiotropic regulator. Several of these genes are orthologous to bldA-dependent genes in S. coelicolor. Furthermore, in silico analysis suggests that over hundred genes may be directly activated or repressed by S. lividans AdpA, although few have been described as being part of any Streptomyces AdpA regulons. This study increases the number of known AdpA-regulated pathways in Streptomyces spp.

【 授权许可】

   
2014 Guyet et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327074632800.pdf 581KB PDF download
Figure 2. 18KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Elliot MA, Buttner MJ, Nodwell JR: Multicellular development in Streptomyces. In Myxobacteria: Multicellularity and Differentiation. Edited by Whitworth DE. Washington, D. C: ASM Press; 2008:419-438.
  • [2]Manteca A, Alvarez R, Salazar N, Yague P, Sanchez J: Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 2008, 74(12):3877-3886.
  • [3]Ohnishi Y, Kameyama S, Onaka H, Horinouchi S: The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 1999, 34(1):102-111.
  • [4]Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF: A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 2003, 50(2):475-486.
  • [5]Nguyen KT, Tenor J, Stettler H, Nguyen LT, Nguyen LD, Thompson CJ: Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol 2003, 185(24):7291-7296.
  • [6]McCormick JR, Flardh K: Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012, 36(1):206-231.
  • [7]StrepDB -The Streptomyces annotation server http://strepdb.streptomyces.org.uk/ webcite
  • [8]Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL: AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997, 61(4):393-410.
  • [9]Egan SM: Growing repertoire of AraC/XylS activators. J Bacteriol 2002, 184(20):5529-5532.
  • [10]Yamazaki H, Tomono A, Ohnishi Y, Horinouchi S: DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 2004, 53(2):555-572.
  • [11]Horinouchi S: Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 2007, 71(2):283-299.
  • [12]Akanuma G, Hara H, Ohnishi Y, Horinouchi S: Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol Microbiol 2009, 73(5):898-912.
  • [13]Hara H, Ohnishi Y, Horinouchi S: DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiology 2009, 155(Pt 7):2197-2210.
  • [14]Higo A, Hara H, Horinouchi S, Ohnishi Y: Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 2012, 19(3):259-274.
  • [15]Lee HN, Kim JS, Kim P, Lee HS, Kim ES: Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 2013, 79(13):4159-4163.
  • [16]Wolanski M, Donczew R, Kois-Ostrowska A, Masiewicz P, Jakimowicz D, Zakrzewska-Czerwinska J: The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J Bacteriol 2011, 193(22):6358-6365.
  • [17]Liu G, Chater KF, Chandra G, Niu G, Tan H: Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 2013, 77(1):112-143.
  • [18]Kato J, Ohnish Y, Horinouchi S: Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J Mol Biol 2005, 350(1):12-26.
  • [19]Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S: AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 2005, 69(3):431-439.
  • [20]Xu D, Kim TJ, Park ZY, Lee SK, Yang SH, Kwon HJ, Suh JW: A DNA-binding factor, ArfA, interacts with the bldH promoter and affects undecylprodigiosin production in Streptomyces lividans. Biochem Biophys Res Commun 2009, 379(2):319-323.
  • [21]den Hengst CD, Tran NT, Bibb MJ, Chandra G, Leskiw BK, Buttner MJ: Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 2010, 78(2):361-379.
  • [22]Xu W, Huang J, Lin R, Shi J, Cohen SN: Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol 2010, 75(3):781-791.
  • [23]Higo A, Horinouchi S, Ohnishi Y: Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 2011, 81(6):1607-1622.
  • [24]Cruz-Morales P, Vijgenboom E, Iruegas-Bocardo F, Girard G, Yanez-Guerra LA, Ramos-Aboites HE, Pernodet JL, Anne J, van Wezel GP, Barona-Gomez F: The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol Evol 2013, 5(6):1165-1175.
  • [25]Guyet A, Gominet M, Benaroudj N, Mazodier P: Regulation of the clpP1clpP2 operon by the pleiotropic regulator AdpA in Streptomyces lividans. Arch Microbiol 2013, 195(12):831-841.
  • [26]Murakami T, Holt TG, Thompson CJ: Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 1989, 171(3):1459-1466.
  • [27]Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA: Practical Streptomyces genetics. Norwich: John Innes Foundation; 2000.
  • [28]Surrey University Streptomyces coelicolor microarray resource http://www.surrey.ac.uk/fhms/microarrays/ webcite
  • [29]Bucca G, Brassington AM, Hotchkiss G, Mersinias V, Smith CP: Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 2003, 50(1):153-166.
  • [30]Bellier A, Mazodier P: ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 2004, 186(10):3238-3248.
  • [31]Ralph SA, Bischoff E, Mattei D, Sismeiro O, Dillies MA, Guigon G, Coppee JY, David PH, Scherf A: Transcriptome analysis of antigenic variation in Plasmodium falciparum - var silencing is not dependent on antisense RNA. Genome Biol 2005, 6(11):R93. BioMed Central Full Text
  • [32]R Development Core Team: R: A language and environment for statistical computing. http://www.R-project.org webcite
  • [33]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
  • [34]marray - a Bioconductor package for exploratory analysis for two-color spotted microarray data http://www.bioconductor.org/packages/release/bioc/html/marray.html webcite
  • [35]Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19(3):368-375.
  • [36]Delmar P, Robin S, Daudin JJ: VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data. Bioinformatics 2005, 21(4):502-508.
  • [37]The Sanger Institute Streptomyces coelicolor protein classification scheme ftp://ftp.sanger.ac.uk/pub/S_coelicolor/classwise.txt
  • [38]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001, 25(4):402-408.
  • [39]Hiard S, Maree R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S: PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 2007, 357(4):861-864.
  • [40]Derre I, Rapoport G, Msadek T: CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 1999, 31(1):117-131.
  • [41]Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS: Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007, 8:229. BioMed Central Full Text
  • [42]Hesketh A, Bucca G, Laing E, Flett F, Hotchkiss G, Smith CP, Chater KF: New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures. BMC Genomics 2007, 8:261. BioMed Central Full Text
  • [43]Lautru S, Deeth RJ, Bailey LM, Challis GL: Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 2005, 1(5):265-269.
  • [44]Koebsch I, Overbeck J, Piepmeyer S, Meschke H, Schrempf H: A molecular key for building hyphae aggregates: the role of the newly identified Streptomyces protein HyaS. Microb Biotechnol 2009, 2(3):343-360.
  • [45]Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP: Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J Biol Chem 2007, 282(24):17486-17500.
  • [46]Li WC, Wu J, Tao WX, Zhao CH, Wang YM, He XY, Chandra G, Zhou XF, Deng ZX, Chater KF, Tao MF: A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 2007, 266(1):20-28.
  • [47]Kim DW, Chater K, Lee KJ, Hesketh A: Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J Bacteriol 2005, 187(9):2957-2966.
  • [48]Kim DW, Chater KF, Lee KJ, Hesketh A: Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane-associated proteome of Streptomyces coelicolor. Microbiol Sgm 2005, 151:2707-2720.
  • [49]Chater KF, Chandra G: The use of the rare UUA codon to define “Expression Space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 2008, 46(1):1-11.
  • [50]Yao MD, Ohtsuka J, Nagata K, Miyazono KI, Zhi Y, Ohnishi Y, Tanokura M: Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J Biol Chem 2013, 288(43):31019-31029.
  • [51]ArrayExpress database http://www.ebi.ac.uk/arrayexpress/ webcite
  • [52]Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pedro Pereira R, Pilicheva E, Rung J, Sharma A, Tang YA, Ternent T, Tikhonov A, Welter D, Williams E, Brazma A, Parkinson H, Sarkans U: ArrayExpress update–trends in database growth and links to data analysis tools. Nucleic Acids Res 2013, 41(Database issue):D987-D990.
  文献评价指标  
  下载次数:5次 浏览次数:27次