期刊论文详细信息
BMC Research Notes
Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin
Kevin A Glover2  Frank Nilsen3  Bjørn Olav Kvamme1  Monica F Solberg3 
[1] Section of Health, Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway;Section of Population Genetics and Ecology, Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway;Department of Biology, University of Bergen, Box 7800, 5020, Bergen, Norway
关键词: Non additive inheritance;    Oxidative stress;    Insulin-like growth factor −1;    mRNA level;    Common garden;    Hybrid;    Introgression;    Farmed escapees;    Atlantic salmon;   
Others  :  1165059
DOI  :  10.1186/1756-0500-5-672
 received in 2012-09-14, accepted in 2012-11-22,  发布年份 2012
PDF
【 摘 要 】

Background

Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress.

Results

In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon.

Conclusion

Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate.

【 授权许可】

   
2012 Solberg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416023624786.pdf 1586KB PDF download
Figure 3. 94KB Image download
Figure 2. 130KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Gjedrem T, Gjoen HM, Gjerde B: Genetic-origin of Norwegian farmed Atlantic salmon. Aquaculture 1991, 98(1–3):41-50.
  • [2]The Norwegian Directorate of Fisheries: Oppdaterte rømmingstall (in Norwegian). http://www.fiskeridir.no/statistikk/akvakultur/oppdaterte-roemmingstall webcite
  • [3]Saegrov H, Hindar K, Kalas S, Lura H: Escaped farmed Atlantic salmon replace the original salmon stock in the River Vosso, western Norway. ICES J Mar Sci 1997, 54(6):1166-1172.
  • [4]Crozier WW: Escaped farmed salmon, Salmo salar L., in the Glenarm River, Northern Ireland: genetic status of the wild population 7 years on. Fish Manag Ecol 2000, 7(5):437-446.
  • [5]Crozier WW: Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a northern Irish river. Aquaculture 1993, 113(1–2):19-29.
  • [6]Clifford SL, McGinnity P, Ferguson A: Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol 1998, 52(1):118-127.
  • [7]Clifford SL, McGinnity P, Ferguson A: Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci 1998, 55(2):358-363.
  • [8]Skaala O, Wennevik V, Glover KA: Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci 2006, 63(7):1224-1233.
  • [9]Bourret V, O'Reilly PT, Carr JW, Berg PR, Bernatchez L: Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 2011, 106(3):500-510.
  • [10]Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala O: Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One 2012, 7(8):e43129.
  • [11]Glover KA, Ottera H, Olsen RE, Slinde E, Taranger GL, Skaala O: A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 2009, 286(3–4):203-210.
  • [12]McGinnity P, Stone C, Taggart JB, Cooke D, Cotter D, Hynes R, McCamley C, Cross T, Ferguson A: Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci 1997, 54(6):998-1008.
  • [13]Thodesen J, Grisdale-Helland B, Helland SJ, Gjerde B: Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar). Aquaculture 1999, 180(3–4):237-246.
  • [14]Fleming IA, Einum S: Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J Mar Sci 1997, 54(6):1051-1063.
  • [15]Gross MR: One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can J Fish Aquat Sci 1998, 55:131-144.
  • [16]Gjedrem T: Genetic improvement of cold-water fish species. Aquacult Res 2000, 31(1):25-33.
  • [17]McGinnity P, Prodohl P, Ferguson K, Hynes R, O'Maoileidigh N, Baker N, Cotter D, O'Hea B, Cooke D, Rogan G: Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond B Biol Sci 2003, 270(1532):2443-2450.
  • [18]Houde ALS, Fraser DJ, Hutchings JA: Fitness-related consequences of competitive interactions between farmed and wild Atlantic salmon at different proportional representations of wild-farmed hybrids. ICES J Mar Sci 2009, 67(4):657-667.
  • [19]Einum S, Fleming IA: Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J Fish Biol 1997, 50(3):634-651.
  • [20]Houde ALS, Fraser DJ, Hutchings JA: Reduced anti-predator responses in multi-generational hybrids of farmed and wild Atlantic salmon (Salmo salar L.). Conserv Genet 2010, 11(3):785-794.
  • [21]Skaala O, Taggart JB, Gunnes K: Genetic differences between five major domesticated strains of Atlantic salmon and wild salmon. J Fish Biol 2005, 67:118-128.
  • [22]Skaala O, Hoyheim B, Glover KA, Dahle G: Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture 2004, 240(1–4):131-143.
  • [23]Karlsson S, Moen T, Lien S, Glover KA, Hindar K: Generic genetic differences between farmed and wild Atlantic salmon identified from a 7 K SNP-chip. Mol Ecol Resour 2011, 11:247-253.
  • [24]Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L: Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol Ecol 2008, 17(1):314-324.
  • [25]Roberge C, Einum S, Guderley H, Bernatchez L: Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Mol Ecol 2006, 15(1):9-20.
  • [26]Debes PV, Normandeau E, Fraser DJ, Bernatchez L, Hutchings JA: Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments. Mol Ecol 2012, 21:2574-2587.
  • [27]Solberg MF, Skaala Ø, Nilsen F, Glover KA: Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid atlantic Salmon families exposed to environmental stress. PLoS ONE 2013, 8(1):e54469.
  • [28]Hayes JD, Flanagan JU, Jowsey IR: Glutathione transferases. Annu Rev Pharmacol Toxicol 2005, 45:51-88.
  • [29]Iwama GK, Afonso LOB, Todgham A, Ackerman P, Nakano K: Are hsps suitable for indicating stressed states in fish? J Exp Biol 2004, 207(1):15-19.
  • [30]Bjornsson BT: The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 1997, 17(1–6):9-24.
  • [31]Reinecke M, Bjornsson BT, Dickhoff WW, McCormick SD, Navarro I, Power DM, Gutierrez J: Growth hormone and insulin-like growth factors in fish: Where we are and where to go. Gen Comp Endocrinol 2005, 142(1–2):20-24.
  • [32]Moriyama S, Swanson P, Nishii M, Takahashi A, Kawauchi H, Dickhoff WW, Plisetskaya EM: Development of a homologous radioimmunoassay for coho salmon insulin-like growth-factor-I. Gen Comp Endocrinol 1994, 96(1):149-161.
  • [33]Duan C, Plisetskaya EM: Nutritional regulation of insulin-like growth factor-I messenger-RNA expression in salmon tissues. J Endocrinol 1993, 139(2):243-252.
  • [34]Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I: Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 2005, 6:21. BioMed Central Full Text
  • [35]Moore LJ, Somamoto T, Lie KK, Dijkstra JM, Hordvik I: Characterisation of salmon and trout CD8 alpha and CD8 beta. Mol Immunol 2005, 42(10):1225-1234.
  • [36]Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M: Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 2010, 10:4. BioMed Central Full Text
  • [37]Frost P, Nilsen F: Validation of reference genes for transcription profiling in the salmon louse, Lepeophtheirus salmonis, by quantitative real-time PCR. Vet Parasitol 2003, 118(1–2):169-174.
  • [38]Aursnes IA, Rishovd AL, Karlsen HE, Gjøen T: Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l.) during temperature stress. BMC Research Notes 2011, 4:104. BioMed Central Full Text
  • [39]Hamalainen HK, Tubman JC, Vikman S, Kyrola T, Ylikoski E, Warrington JA, Lahesmaa R: Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Anal Biochem 2001, 299(1):63-70.
  • [40]Zahl IH, Kiessling A, Samuelsen OB, Olsen RE: Anesthesia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol Biochem 2010, 36(3):719-730.
  • [41]Sanchez JA, Clabby C, Ramos D, Blanco G, Flavin F, Vazquez E, Powell R: Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon). Heredity 1996, 77:423-432.
  • [42]O'Reilly PT, Hamilton LC, McConnell SK, Wright JM: Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 1996, 53(10):2292-2298.
  • [43]Grimholt U, Drablos F, Jorgensen SM, Hoyheim B, Stet RJM: The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics 2002, 54(8):570-581.
  • [44]Stet RJM, de Vries B, Mudde K, Hermsen T, van Heerwaarden J, Shum BP, Grimholt U: Unique haplotypes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 2002, 54(5):320-331.
  • [45]Slettan A, Olsaker I, Lie O: Atlantic salmon, Salmo salar, microsattelites at the SsOSL25, SsOSL85, SsOSL311, SsOSL417 loci. Anim Genet 1995, 26(4):281-282.
  • [46]Taggart JB: FAP: an exclusion-based parental assignment program with enhanced predictive functions. Molecular Ecol Notes 2007, 7(3):412-415.
  • [47]Glover KA, Taggart JB, Skaala O, Teale AJ: Comparative performance of juvenile sea trout families in high and low feeding environments. J Fish Biol 2001, 59(1):105-115.
  • [48]Glover KA, Taggart JB, Skaala O, Teale AJ: A study of inadvertent domestication selection during start-feeding of brown trout families. J Fish Biol 2004, 64(5):1168-1178.
  • [49]Glover KA, Hansen MM, Lien S, Als TD, Hoyheim B, Skaala O: A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet 2010, 11:2.
  • [50]Glover KA: Forensic identification of fish farm escapees: the Norwegian experience. Aquaculture Environ Interact 2010, 1(1):1-10.
  • [51]Glover KA, Skilbrei OT, Skaala O: Genetic assignment identifies farm of origin for Atlantic salmon Salmo salar escapees in a Norwegian fjord. ICES J Mar Sci 2008, 65(6):912-920.
  • [52]Olsvik PA, Torstensen BE, Berntssen MHG: Effects of complete replacement of fish oil with plant oil on gastrointestinal cell death, proliferation and transcription of eight genes' encoding proteins responding to cellular stress in Atlantic salmon Salmo salar L. J Fish Biol 2007, 71(2):550-568.
  • [53]Huang TS, Olsvik PA, Krovel A, Tung HS, Torstensen BE: Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2009, 154(4):435-442.
  • [54]Nordgarden U, Fjelldal PG, Hansen T, Bjornsson BT, Wargelius A: Growth hormone and insulin-like growth factor-I act together and independently when regulating growth in vertebral and muscle tissue of atlantic salmon postsmolts. Gen Comp Endocrinol 2006, 149(3):253-260.
  • [55]Olsvik PA, Kristensen T, Waagbo R, Rosseland BO, Tollefsen KE, Baeverfjord G, Berntssen MHG: mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C Toxicol Pharmacol 2005, 141(3):314-323.
  • [56]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL: The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 2009, 55(4):611-622.
  • [57]Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FSB, Olsvik PA, Penning LC, Toegel S: MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 2010, 11:74. BioMed Central Full Text
  • [58]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 2008, 3(6):1101-1108.
  • [59]Crawley MJ: The R Book. London: Wiley; 2007.
  • [60]Johnson JB, Omland KS: Model selection in ecology and evolution. Trends Ecol Evol 2004, 19(2):101-108.
  • [61]Keene ON: The log transformation is special. Stat Med 1995, 14(8):811-819.
  • [62]Cole TJ: Sympercents: symmetric percentage differences on the 100 log(e) scale simplify the presentation of log transformed data. Stat Med 2000, 19(22):3109-3125.
  • [63]Hairston NG, Holtmeier CL, Lampert W, Weider LJ, Post DM, Fischer JM, Caceres CE, Fox JA, Gaedke U: Natural selection for grazer resistance to toxic cyanobacteria: Evolution of phenotypic plasticity? Evolution 2001, 55(11):2203-2214.
  • [64]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  • [65]Bate D, Maechler M, Bolker B: lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. 2012. http://cran.r-project.org/web/packages/lme4/ webcite
  • [66]Pierce AL, Beckman BR, Schearer KD, Larsen DA, Dickhoff WW: Effects of ration on somatotropic hormones and growth in coho salmon. Comp Biochem Physiol B Biochem Mol Biol 2001, 128(2):255-264.
  • [67]Larsen DA, Beckman BR, Dickhoff WW: The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (Insulin, insulin-like growth factor-I and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 2001, 123(3):308-323.
  • [68]Gabillard JC, Kamangar BB, Montserrat N: Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss). J Endocrinol 2006, 191(1):15-24.
  • [69]Dyer AR, Barlow CG, Bransden MP, Carter CG, Glencross BD, Richardson N, Thomas PM, Williams KC, Carragher JF: Correlation of plasma IGF-I concentrations and growth rate in aquacultured finfish: a tool for assessing the potential of new diets. Aquaculture 2004, 236(1–4):583-592.
  • [70]Bailey GS, Poulter RTM, Stockwell PA: Gene duplication in tetraploid fish - model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci USA 1978, 75(11):5575-5579.
  • [71]Perezsanchez J, Martipalanca H, Kaushik SJ: Ration size and protein-intake affect circulating growth-hormone concentration, hepatic growth-hormone binding and plasma insulin-like growth-factor-I immunoreactivity in a marine teleost, the gilthead sea bream (Sparus aurata). J Nutr 1995, 125(3):546-552.
  • [72]Chauvigne F, Gabillard JC, Weil C, Rescan PY: Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen Comp Endocrinol 2003, 132(2):209-215.
  • [73]Bower NI, Li XJ, Taylor R, Johnston IA: Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J Exp Biol 2008, 211(24):3859-3870.
  • [74]Woodward CC, Strange RJ: Physiological stress responses in wild and hatchery-reared rainbow-trout. Trans Am Fish Soc 1987, 116(4):574-579.
  • [75]Beckman BR, Larsen DA, Moriyama S, Lee-Pawlak B, Dickhoff WW: Insulin-like growth factor-I and environmental modulation of growth during smoltification of spring chinook salmon (Oncorhynchus tshawytscha). Gen Comp Endocrinol 1998, 109(3):325-335.
  • [76]Wargelius A, Fjelldal PG, Benedet S, Hansen T, Bjornsson BT, Nordgarden U: A peak in gh-receptor expression is associated with growth activation in Atlantic salmon vertebrae, while upregulation of igf-I receptor expression is related to increased bone density. Gen Comp Endocrinol 2005, 142(1–2):163-168.
  • [77]Nordgarden U, Hansen T, Hemre GI, Sundby A, Bjornsson BT: Endocrine growth regulation of adult Atlantic salmon in seawater: The effects of light regime on plasma growth hormone, insulin-like growth factor-I, and insulin levels. Aquaculture 2005, 250(3–4):862-871.
  • [78]Overturf K, Sakhrani D, Devlin RH: Expression profile for metabolic and growth-related genes in domesticated and transgenic coho salmon (Oncorhynchus kisutch) modified for increased growth hormone production. Aquaculture 2010, 307(1–2):111-122.
  • [79]Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, Goh B: Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proc Natl Acad Sci USA 2009, 106(9):3047-3052.
  • [80]Tymchuk WE, Beckman B, Devlin RH: Altered Expression of Growth Hormone/Insulin-Like Growth Factor I Axis Hormones in Domesticated Fish. Endocrinology 2009, 150(4):1809-1816.
  • [81]Neregard L, Sundt-Hansen L, Hindar K, Einum S, Johnsson JI, Devlin RH, Fleming IA, Bjornsson BT: Wild Atlantic salmon Salmo salar L. strains have greater growth potential than a domesticated strain selected for fast growth. J Fish Biol 2008, 73(1):79-95.
  • [82]Fleming IA, Agustsson T, Finstad B, Johnsson JI, Bjornsson BT: Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 2002, 59(8):1323-1330.
  • [83]Pfaffl M, Schwarz F, Sauerwein H: Quantification of insulin-like growth factor-1 (IGF-1) mRNA: Modulation of growth intensity by feeding results in inter- and intra-tissue-specific differences of IGF-1 mRNA expression in steers. Exp Clin Endocrinol Diabetes 1998, 106(6):514-521.
  • [84]Greene MW, Chen TT: Quantitation of IGF-I, IGF-II, and multiple insulin receptor family member messenger RNAs during embryonic development in rainbow trout. Mol Reprod Dev 1999, 54(4):348-361.
  • [85]Beckman BR, Shimizu M, Gadberry BA, Parkins PJ, Cooper KA: The effect of temperature change on the relations among plasma IGF-1, 41-kDa IGFBP, and growth rate in postsmolt coho salmon. Aquaculture 2004, 241(1–4):601-619.
  • [86]Sacobie CFD, Glebe BD, Barbeau MA, Lall SP, Benfey TJ: Effect of strain and ploidy on growth performance of Atlantic salmon, Salmo salar, following seawater transfer. Aquaculture 2012, 334:58-64.
  • [87]Ali M, Nicieza A, Wootton RJ: Compensatory growth in fishes: a response to growth depression. Fish Fish 2003, 4(2):147-190.
  • [88]Metcalfe NB, Monaghan P: Compensation for a bad start: grow now, pay later? Trends Ecol Evol 2001, 16(5):254-260.
  • [89]Fridovich I: Oxygen toxicity: A radical explanation. J Exp Biol 1998, 201(8):1203-1209.
  • [90]Waagbo R, Hosfeld CD, Fivelstad S, Olsvik PA, Breck O: The impact of different water gas levels on cataract formation, muscle and lens free amino acids, and lens antioxidant enzymes and heat shock protein mRNA abundance in smolting Atlantic salmon, Salmo salar L. Comp Biochem Physiol A Mol Integr Physiol 2008, 149(4):396-404.
  • [91]Martinez-Alvarez RM, Morales AE, Sanz A: Antioxidant defenses in fish: Biotic and abiotic factors. Rev Fish Biol Fisheries 2005, 15(1–2):75-88.
  • [92]Furne M, Garcia-Gallego M, Hidalgo MC, Morales AE, Domezain A, Domezain J, Sanz A: Oxidative stress parameters during starvation and refeeding periods in Adriatic sturgeon (Acipenser naccarii) and rainbow trout (Oncorhynchus mykiss). Aquacult Nutr 2009, 15(6):587-595.
  • [93]Bayir A, Sirkecioglu AN, Bayir M, Haliloglu HI, Kocaman EM, Aras NM: Metabolic responses to prolonged starvation, food restriction, and refeeding in the brown trout, Salmo trutta: Oxidative stress and antioxidant defenses. Comp Biochem Physiol B Biochem Mol Biol 2011, 159(4):191-196.
  • [94]Hidalgo MC, Exposito A, Palma JM, de la Higuera M: Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int J Biochem Cell Biol 2002, 34(2):183-193.
  • [95]Blom S, Andersson TB, Forlin L: Effects of food deprivation and handling stress on head kidney 17 alpha-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat Toxicol 2000, 48(2–3):265-274.
  • [96]Normandeau E, Hutchings JA, Fraser DJ, Bernatchez L: Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol Appl 2009, 2(4):489-503.
  • [97]Gibson G, Riley-Berger R, Harshman L, Kopp A, Vacha S, Nuzhdin S, Wayne M: Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 2004, 167(4):1791-1799.
  • [98]Auger DL, Gray AD, Ream TS, Kato A, Coe EH, Birchler JA: Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 2005, 169(1):389-397.
  • [99]Hedgecock D, Lin JZ, DeCola S, Haudenschild CD, Meyer E, Manahan DT, Bowen B: Transcriptomic analysis of growth heterosis in larval Pacific oysters (Crassostrea gigas). Proc Natl Acad Sci USA 2007, 104(7):2313-2318.
  • [100]Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS: All possible modes of gene action are observed in a global comparison of gene expression in a maize F-1 hybrid and its inbred parents. Proc Natl Acad Sci USA 2006, 103(18):6805-6810.
  • [101]Cui XQ, Affourtit J, Shockley KR, Woo Y, Churchill GA: Inheritance patterns of transcript levels in F-1 hybrid mice. Genetics 2006, 174(2):627-637.
  文献评价指标  
  下载次数:24次 浏览次数:17次