BMC Infectious Diseases | |
Nucleotide-binding oligomerization domain containing-like receptor family, caspase recruitment domain (CARD) containing 4 (NLRC4) regulates intrapulmonary replication of aerosolized Legionella pneumophila | |
Thomas R Hawn1  Shawn J Skerrett1  Kelly D Smith1  William R Berrington1  | |
[1] Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356423, Seattle, Washington, 98195-6523, USA | |
关键词: TLR5; NLRC4; Alveolar macrophage; Pneumonia; Legionella pneumophila; | |
Others : 1146336 DOI : 10.1186/1471-2334-13-371 |
|
received in 2013-03-19, accepted in 2013-08-08, 发布年份 2013 | |
【 摘 要 】
Background
Legionella pneumophila (Lp) flagellin activates signaling pathways in murine macrophages that control Lp replication. Nucleotide-binding oligomerization domain (NOD) containing-like receptor (NLR) family, caspase recruitment domain (CARD) containing 4 (NLRC4) and Toll-like Receptor (TLR5) both recognize Lp flagellin in vitro, but whether these two receptors play redundant or separate functional roles in vivo is unknown.
Methods
The immune response of Nlrc4−/−, Nlrc4−/−/Tlr5−/−, and wild type C57Bl/6 mice was analyzed after in vivo infection with aerosolized Lp.
Results
Lp clearance from the lungs was delayed in Nlrc4−/− mice over seven days in comparison to wild type controls. Nlrc4−/−/Tlr5−/− mice had no additional defect. In contrast to TLR5, NLRC4 did not regulate recruitment of neutrophils to the lung. Although there were no differences among the mouse strains in the lung transcriptome at 4 hours, Nlrc4−/− and Nlrc4−/−Tlr5−/− mice had increased lung inflammation at 72 hours in comparison to WT. Nlrc4−/−/Tlr5−/− mice also had altered cytokine production at both 4 and 24 hours post infection when compared to wild-type (WT) and Nlrc4−/− mice. Lp replication in murine alveolar macrophages was NLRC4-dependent and TLR5-independent.
Conclusion
These studies reveal that NLRC4 and TLR5 mediate different roles in the inflammatory response to Lp flagellin in an aerosolized infection model and NLRC4 regulates replication in both lungs and alveolar macrophages.
【 授权许可】
2013 Berrington et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150403103657979.pdf | 1951KB | download | |
Figure 5. | 59KB | Image | download |
Figure 4. | 111KB | Image | download |
Figure 3. | 21KB | Image | download |
Figure 2. | 106KB | Image | download |
Figure 1. | 48KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Benin AL, Benson RF, Besser RE: Trends in legionnaires disease, 1980–1998: declining mortality and new patterns of diagnosis. Clin Infect Dis 2002, 35(9):1039-1046.
- [2]Lau HY, Ashbolt NJ: The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. Journal of applied microbiology 2009, 107(2):368-378.
- [3]Archer KA, Roy CR: MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect Immun 2006, 74(6):3325-3333.
- [4]Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, Aderem A, Smith KD, Skerrett SJ: Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J Immunol 2007, 179(10):6981-6987.
- [5]Hawn TR, Smith KD, Aderem A, Skerrett SJ: Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis 2006, 193(12):1693-1702.
- [6]Archer KA, Alexopoulou L, Flavell RA, Roy CR: Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 2009, 11(1):21-36.
- [7]Monroe KM, McWhirter SM, Vance RE: Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS pathogens 2009, 5(11):e1000665.
- [8]Frutuoso MS, Hori JI, Pereira MS, Junior DS, Sonego F, Kobayashi KS, Flavell RA, Cunha FQ, Zamboni DS: The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. Microbes Infect 2010, 12(11):819-827.
- [9]Berrington WR, Iyer R, Wells RD, Smith KD, Skerrett SJ, Hawn TR: NOD1 and NOD2 regulation of pulmonary innate immunity to Legionella pneumophila. Eur J Immunol 2010, 40(12):3519-3527.
- [10]Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, et al.: The birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 2006, 7(3):318-325.
- [11]Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE: Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS pathogens 2006, 2(3):e18.
- [12]Kikuchi T, Kobayashi T, Gomi K, Suzuki T, Tokue Y, Watanabe A, Nukiwa T: Dendritic cells pulsed with live and dead Legionella pneumophila elicit distinct immune responses. J Immunol 2004, 172(3):1727-1734.
- [13]Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C: An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012, 36(3):464-476.
- [14]Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, et al.: Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008, 9(10):1171-1178.
- [15]Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS: Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. Journal of Experimental Medicine 2006, 203(4):1093-1104.
- [16]Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, et al.: Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 2006, 281(46):35217-35223.
- [17]Diez E, Lee SH, Gauthier S, Yaraghi Z, Tremblay M, Vidal S, Gros P: Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 2003, 33(1):55-60.
- [18]Growney JD, Dietrich WF: High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res 2000, 10(8):1158-1171.
- [19]Kofoed EM, Vance RE: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011, 477(7366):592-595.
- [20]Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477(7366):596-600.
- [21]Case CL, Shin S, Roy CR: Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 2009, 77(5):1981-1991.
- [22]Pereira MS, Morgantetti GF, Massis LM, Horta CV, Hori JI, Zamboni DS: Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 2011, 187(12):6447-6455.
- [23]Brieland J, Freeman P, Kunkel R, Chrisp C, Hurley M, Fantone J, Engleberg C: Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires’ disease. Am J Pathol 1994, 145(6):1537-1546.
- [24]Molofsky AB, Shetron-Rama LM, Swanson MS: Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infect Immun 2005, 73(9):5720-5734.
- [25]Hammer BK, Tateda ES, Swanson MS: A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 2002, 44(1):107-118.
- [26]Dietrich C, Heuner K, Brand BC, Hacker J, Steinert M: Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 2001, 69(4):2116-2122.
- [27]Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M, Kato H, Sougawa N, Matsui H, Kuwata H, et al.: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c + lamina propria cells. Nat Immunol 2006, 7(8):868-874.
- [28]Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004, 430(6996):213-218.
- [29]Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB: Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 2004, 172(6):3377-3381.
- [30]Skerrett SJ, Henderson WR, Martin TR: Alveolar macrophage function in rats with severe protein calorie malnutrition. Arachidonic acid metabolism, cytokine release, and antimicrobial activity. J Immunol 1990, 144(3):1052-1061.
- [31]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
- [32]Carey VJ, Gentry J, Whalen E, Gentleman R: Network structures and algorithms in bioconductor. Bioinformatics 2005, 21(1):135-136.
- [33]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 2004, 3(Article3):1-25.
- [34]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995, 57(1):289-300.
- [35]Brieland JK, Jackson C, Hurst S, Loebenberg D, Muchamuel T, Debets R, Kastelein R, Churakova T, Abrams J, Hare R, et al.: Immunomodulatory role of endogenous interleukin-18 in gamma interferon-mediated resolution of replicative Legionella pneumophila lung infection. Infect Immun 2000, 68(12):6567-6573.
- [36]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
- [37]Wettenhall JM, Smyth GK: limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 2004, 20(18):3705-3706.
- [38]Rogers J, Hakki A, Perkins I, Newton C, Widen R, Burdash N, Klein T, Friedman H: Legionella pneumophila infection up-regulates dendritic cell toll-like receptor 2 (TLR2)/TLR4 expression and key maturation markers. Infect Immun 2007, 75(6):3205-3208.
- [39]Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010, 11(12):1136-1142.
- [40]McDonald PP, Fadok VA, Bratton D, Henson PM: Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 1999, 163(11):6164-6172.
- [41]Park DR, Skerrett SJ: IL-10 enhances the growth of Legionella pneumophila in human mononuclear phagocytes and reverses the protective effect of IFN-γ: differential responses of blood monocytes and alveolar macrophages. J Immunol 1996, 157(6):2528-2538.
- [42]Wewers MD, Dare HA, Winnard AV, Parker JM, Miller DK: IL-1 beta-converting enzyme (ICE) is present and functional in human alveolar macrophages: macrophage IL-1 beta release limitation is ICE independent. J Immunol 1997, 159(12):5964-5972.
- [43]Li H, Willingham SB, Ting JP, Re F: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 2008, 181(1):17-21.
- [44]Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, et al.: Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 2009, 113(10):2324-2335.
- [45]Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H, N’Guessan PD, Gunther S, Schmeck B, Hippenstiel S, et al.: NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 2008, 180(10):6808-6815.
- [46]Scharf S, Hippenstiel S, Flieger A, Suttorp N, N’Guessan PD: Induction of human beta-defensin-2 in pulmonary epithelial cells by Legionella pneumophila: involvement of TLR2 and TLR5, p38 MAPK, JNK, NF-kappaB, and AP-1. American journal of physiology Lung cellular and molecular physiology 2010, 298(5):L687-L695.
- [47]Scharf S, Vardarova K, Lang F, Schmeck B, Opitz B, Flieger A, Heuner K, Hippenstiel S, Suttorp N, N’Guessan PD: Legionella pneumophila induces human beta defensin-3 in pulmonary cells. Respiratory research 2010, 11:93. BioMed Central Full Text
- [48]Fortier A, Faucher SP, Diallo K, Gros P: Global cellular changes induced by Legionella pneumophila infection of bone marrow-derived macrophages. Immunobiology 2011, 216(12):1274-1285.
- [49]Fortier A, Doiron K, Saleh M, Grinstein S, Gros P: Restriction of Legionella pneumophila replication in macrophages requires concerted action of the transcriptional regulators Irf1 and Irf8 and nod-like receptors Naip5 and Nlrc4. Infect Immun 2009, 77(11):4794-4805.