期刊论文详细信息
BMC Genomics
Populational landscape of INDELs affecting transcription factor-binding sites in humans
Sandro J. de Souza4  Jorge E.S. de Souza1  Vandeclécio L. da Silva3  André M. Ribeiro-dos-Santos2 
[1] Instituto Metrópole Digital, UFRN, Natal, RN, Brazil;PhD Program in Genetics and Molecular Biology, UFPA, Belém, PA, Brazil;Instituto de Bioinformática e Biotecnologia, Natal, RN, Brazil;Brain Institute, UFRN, Av. Nascimento de Castro, 2155 - 59056-450, Natal, RN, Brazil
关键词: Population genetics;    INDEL;    Transcription factor-binding site;    Transcription factor;   
Others  :  1222465
DOI  :  10.1186/s12864-015-1744-5
 received in 2015-02-21, accepted in 2015-07-02,  发布年份 2015
【 摘 要 】

Background

Differences in gene expression have a significant role in the diversity of phenotypes in humans. Here we integrated human public data from ENCODE, 1000 Genomes and Geuvadis to explore the populational landscape of INDELs affecting transcription factor-binding sites (TFBS). A significant fraction of TFBS close to the transcription start site of known genes is affected by INDELs with a consequent effect at the expression of the associated gene.

Results

Hundreds of TFBS-affecting INDELs (TFBS-ID) show a differential frequency between human populations, suggesting a role of natural selection in the spread of such variant INDELs. A comparison with a dataset of known human genomic regions under natural selection allowed us to identify several cases of TFBS-ID likely involved in populational adaptations. Ontology analyses on the differential TFBS-ID further indicated several biological processes under natural selection in different populations.

Conclusion

Together, our results strongly suggest that INDELs have an important role in modulating gene expression patterns in humans. The dataset we make available, together with other data reporting variability at both regulatory and coding regions of genes, represent a powerful tool for studies aiming to better understand the evolution of gene regulatory networks in humans.

【 授权许可】

   
2015 Ribeiro-dos-Santos et al.

附件列表
Files Size Format View
Fig. 5. 52KB Image download
Fig. 4. 90KB Image download
Fig. 3. 29KB Image download
Fig. 2. 22KB Image download
Fig. 1. 60KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Arbiza L, Gronau I, Aksoy BA, Hubisz MJ, Gulko B, Keinan A, Siepel A. Genome-wide inference of natural selection on human transcription factor binding sites. Nat Genet. 2013; 45:723-729.
  • [2]Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007; 8:206-216.
  • [3]Yokoyama KD, Zhang Y, Ma J. Tracing the evolution of lineage-specific transcription factor binding sites in a birth-death framework. PLoS Comput Biol. 2014; 10: Article ID e1003771
  • [4]McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, Indjeian VB, Lim X, Menke DB, Schaar BT, Wenger AM, Bejerano G, Kingsley DM. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature. 2011; 471:216-219.
  • [5]Ramalho RF, Gelfman S, de JE S, Ast G, de SJ S, Meyer D. Testing for natural selection in human exonic splicing regulators associated with evolutionary rate shifts. J Mol Evol. 2013; 76:228-239.
  • [6]Lowe CB, Kellis M, Siepel A, Raney BJ, Clamp M, Salama SR, Kingsley DM, Lindblad-Toh K, Haussler D. Three periods of regulatory innovation during vertebrate evolution. Science. 2011; 333:1019-1024.
  • [7]Sakabe NJ, Nobrega MA. Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution. Philos Trans R Soc Lond B Biol Sci. 2013; 368:20130022.
  • [8]Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, Shi M, Urban AE, Hong M-YY, Karczewski KJ, Huber W, Weissman SM, Gerstein MB, Korbel JO, Snyder M. Variation in transcription factor binding among humans. Science. 2010; 328:232-235.
  • [9]Reddy TE, Gertz J, Pauli F, Kucera KS, Varley KE, Newberry KM, Marinov GK, Mortazavi A, Williams BA, Song L, Crawford GE, Wold B, Willard HF, Myers RM. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 2012; 22:860-869.
  • [10]Vernot B, Stergachis AB, Maurano MT, Vierstra J, Neph S, Thurman RE, Stamatoyannopoulos JA, Akey JM. Personal and population genomics of human regulatory variation. Genome Res. 2012; 22:1689-1697.
  • [11]Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu Y, Boyle AP, Zhang QZ, Zakharia F, Spacek DV, Li J, Xie D, Olarerin-George A, Steinmetz LM, Hogenesch JB, Kellis M, Batzoglou S, Snyder M. Extensive variation in chromatin staes across humans. Science. 2013; 342:750.
  • [12]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491:56-65.
  • [13]Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G et al.. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature. 2012; 489:83-90.
  • [14]Lappalainen T, Sammeth M, Friedländer MR, Hoent PA, Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, Van LM, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H et al.. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013; 501:506-511.
  • [15]Pybus M, Dall’Olio GM, Luisi P, Uzkudun M, Carreño-Torres A, Pavlidis P, Laayouni H, Bertranpetit J, Engelken J. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Res. 2014; 42(Database issue):D903-D909.
  • [16]Hurst L, Sachenkova O, Daub C, Forrest A, Huminiecki L, Consortium F. A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biol. 2014; 15:413. BioMed Central Full Text
  • [17]Ardlie K, Deluca D, Segre A, Sullivan T, Young T, Gelfand E, Trowbridge C, Maller J, Tukiainen T, Lek M, Ward L, Kheradpour P, Iriarte B, Meng Y, Palmer C, Esko T, Winckler W, Hirschhorn J, Kellis M, MacArthur D, Getz G, Shabalin A, Li G, Zhou Y-H, Nobel A, Rusyn I, Wright F, Lappalainen T, Ferreira P, Ongen H et al.. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015; 348:648-660.
  • [18]Ni X, Zhang YE, Nègre N, Chen S, Long M, White KP. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol. 2012; 10: Article ID e1001420
  • [19]Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2004; 2: Article ID e286
  • [20]Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG, Montgomery GW, Hayward NK, Thomas G, Hoover RN, Chanock S, Hunter DJ. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008; 4: Article ID e1000074
  • [21]Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009; 18:R9-R17.
  • [22]Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, Craigen WJ. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem. 2001; 276:39206-39212.
  • [23]Colonna V, Ayub Q, Chen Y, Pagani L, Luisi P, Pybus M, Garrison E, Xue Y, Tyler-Smith C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. Genome Biol. 2014; 15:R88. BioMed Central Full Text
  • [24]Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, Marguerie R, Meyerhof W, Goldstein DB. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol. 2005; 15:1257-1265.
  • [25]Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol. 2006; 23:292-300.
  • [26]Toda Y, Nakagita T, Hayakawa T, Okada S, Narukawa M, Imai H, Ishimaru Y, Misaka T. Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor). Journal of Biological Chemistry. 2013; 288:36863-36877.
  • [27]Hajeb P, Jinap S. Umami taste components and their sources in Asian foods. Crit Rev Food Sci Nutr. 2015; 55:778-791.
  • [28]Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, Robinson-Rechavi M, Excoffier L. Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol. 2013; 30:1544-1558.
  • [29]Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Ferrer-Admettla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011; 7: Article ID e1002355
  • [30]Ko DC, Gamazon ER, Shukla KP, Pfuetzner RA, Whittington D, Holden TD, Brittnacher MJ, Fong C, Radey M, Ogohara C, Stark AL, Akey JM, Dolan ME, Wurfel MM, Miller SI. Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proc Natl Acad Sci U S A. 2012; 109:E2343-E2352.
  • [31]Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Unterländer M, Hollfelder N, Potekhina ID, Schier W, Thomas MG, Burger J. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc Natl Acad Sci U S A. 2014; 111:4832-4837.
  • [32]Lachance J, Vernot B, Elbers CC, Ferwerda B, Froment A, Bodo J-MM, Lema G, Fu W, Nyambo TB, Rebbeck TR, Zhang K, Akey JM, Tishkoff SA. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell. 2012; 150:457-469.
  • [33]Lachance J, Tishkoff SA. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. Bioessays. 2013; 35:780-786.
  • [34]Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005; 15:1566-1575.
  • [35]Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000; 155:1405-1413.
  • [36]Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993; 133:693-709.
  • [37]Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002; 19:2092-2100.
  • [38]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989; 123:585-595.
  • [39]Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM et al.. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012; 22:1813-1831.
  • [40]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297-1303.
  • [41]Cingolani P, Platts A, Wang LL EL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012; 6:80-92.
  • [42]Team R. R: A Language and Environment for Statistical Computing. 2015.
  • [43]Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python. 2014.
  • [44]Yu G, Wang L-GG, Han Y, He Q-YY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16:284-287.
  文献评价指标  
  下载次数:20次 浏览次数:4次