期刊论文详细信息
BMC Genetics
Genome-wide evolutionary and functional analysis of the Equine Repetitive Element 1: an insertion in the myostatin promoter affects gene expression
Elena Giulotto1  Solomon G. Nergadze1  Elena Raimondi1  Alice Mazzagatti1  Claudia Badiale1  Alessandra Russo2  Francesco Vella1  Francesca M. Piras1  Ori Klipstein1  Margherita Bonuglia2  Riccardo Gamba1  Lela Khoriauli1  Marco Santagostino1 
[1] Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Via Ferrata 1, Pavia, 27100, Italy;Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, Settimo Milanese (MI), 20019, Italy
关键词: Myostatin gene expression;    Equids;    SINEs;    Horse genome;   
Others  :  1229693
DOI  :  10.1186/s12863-015-0281-1
 received in 2015-08-04, accepted in 2015-10-13,  发布年份 2015
【 摘 要 】

Background

In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated.

Results

In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance.

Conclusions

Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.

【 授权许可】

   
2015 Santagostino et al.

附件列表
Files Size Format View
Fig. 7. 29KB Image download
Fig. 6. 49KB Image download
Fig. 5. 94KB Image download
Fig. 4. 28KB Image download
Fig. 3. 26KB Image download
Fig. 2. 135KB Image download
Fig. 1. 19KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999; 9:657-663.
  • [2]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al.. Initial sequencing and analysis of the human genome. Nature. 2001; 409:860-921.
  • [3]Deininger PL, Moran JV, Batzer MA, Kazazian HH. Mobile elements and mammalian genome evolution. Curr Opin Genet Dev. 2003; 13:651-658.
  • [4]Kramerov DA, Vassetzky NS. Short retroposons in eukaryotic genomes. Int Rev Cytol. 2005; 247:165-221.
  • [5]Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet. 2007; 8:241-259.
  • [6]Luchetti A, Mantovani B. Conserved domains and SINE diversity during animal evolution. Genomics. 2013; 102:296-300.
  • [7]Schmid CW, Jelinek WR. The Alu family of dispersed repetitive sequences. Science. 1982; 216:1065-1070.
  • [8]Mighell AJ, Markham AF, Robinson PA. Alu sequences. FEBS Lett. 1997; 417:1-5.
  • [9]Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002; 3:370-379.
  • [10]Roy-Engel AM, Carroll ML, El-Sawy M, Salem A-H, Garber RK, Nguyen SV et al.. Non-traditional Alu evolution and primate genomic diversity. J Mol Biol. 2002; 316:1033-1040.
  • [11]Salem A-H, Kilroy GE, Watkins WS, Jorde LB, Batzer MA. Recently integrated Alu elements and human genomic diversity. Mol Biol Evol. 2003; 20:1349-1361.
  • [12]Wang J, Song L, Gonder MK, Azrak S, Ray DA, Batzer MA et al.. Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms. Gene. 2006; 365:11-20.
  • [13]Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, Vincent B et al.. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol. 2001; 311:17-40.
  • [14]Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS et al.. Ultraconserved elements in the human genome. Science. 2004; 304:1321-1325.
  • [15]Santangelo AM, de Souza FSJ, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet. 2007; 3:1813-1826.
  • [16]Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009; 10:691-703.
  • [17]Okada N, Sasaki T, Shimogori T, Nishihara H. Emergence of mammals by emergency: exaptation. Genes Cells. 2010; 15:801-812.
  • [18]Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol. 2001; 21:1973-1985.
  • [19]Wheelan SJ, Aizawa Y, Han JS, Boeke JD. Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res. 2005; 15:1073-1078.
  • [20]Mätlik K, Redik K, Speek M. L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol. 2006; 2006:71753.
  • [21]Druker R, Whitelaw E. Retrotransposon-derived elements in the mammalian genome: a potential source of disease. J Inherit Metab Dis. 2004; 27:319-330.
  • [22]Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR et al.. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006; 441:87-90.
  • [23]Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ et al.. Landscape of somatic retrotransposition in human cancers. Science. 2012; 337:967-971.
  • [24]Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F et al.. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009; 326:865-867.
  • [25]Sakagami M, Ohshima K, Mukoyama H, Yasue H, Okada N. A novel tRNA species as an origin of short interspersed repetitive elements (SINEs). Equine SINEs may have originated from tRNA(Ser). J Mol Biol. 1994; 239:731-735.
  • [26]Gallagher PC, Lear TL, Coogle LD, Bailey E. Two SINE families associated with equine microsatellite loci. Mamm Genome. 1999; 10:140-144.
  • [27]RepBase. http://www. girinst.org/repbase/ webcite
  • [28]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110:462-467.
  • [29]Hill EW, McGivney BA, Gu J, Whiston R, MacHugh DE. A genome-wide SNP-association study confirms a sequence variant (g.66493737C > T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics. 2010; 11:552. BioMed Central Full Text
  • [30]Szabó G, Dallmann G, Müller G, Patthy L, Soller M, Varga L. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome. 1998; 9:671-672.
  • [31]Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J et al.. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997; 17:71-74.
  • [32]McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997; 94:12457-12461.
  • [33]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B et al.. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006; 38:813-818.
  • [34]Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W et al.. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004; 350:2682-2688.
  • [35]Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG et al.. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007; 3: Article ID e79
  • [36]Dall’Olio S, Fontanesi L, Nanni Costa L, Tassinari M, Minieri L, Falaschini A. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J Biomed Biotechnol. 2010; 2010:542945.
  • [37]Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P et al.. A Sequence Polymorphism in MSTN Predicts Sprinting Ability and Racing Stamina in Thoroughbred Horses. PLoS ONE. 2010; 5: Article ID e8645
  • [38]Tozaki T, Miyake T, Kakoi H, Gawahara H, Sugita S, Hasegawa T et al.. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim Genet. 2010; 41 Suppl 2:28-35.
  • [39]Baron EE, Lopes MS, Mendonça D, da Câmara MA. SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Anim Genet. 2012; 43:229-232.
  • [40]Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J et al.. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013; 9: Article ID e1003211
  • [41]Li R, Liu D-H, Cao C-N, Wang S-Q, Dang R-H, Lan X-Y et al.. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene. 2014; 538:150-154.
  • [42]McGivney BA, Browne JA, Fonseca RG, Katz LM, Machugh DE, Whiston R et al.. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim Genet. 2012; 43:810-812.
  • [43]Tozaki T, Sato F, Hill EW, Miyake T, Endo Y, Kakoi H et al.. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. J Vet Med Sci. 2011; 73:1617-1624.
  • [44]Binns MM, Boehler DA, Lambert DH. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim Genet. 2010; 41 Suppl 2:154-158.
  • [45]Tozaki T, Hill EW, Hirota K, Kakoi H, Gawahara H, Miyake T et al.. A cohort study of racing performance in Japanese Thoroughbred racehorses using genome information on ECA18. Anim Genet. 2012; 43:42-52.
  • [46]Petersen JL, Valberg SJ, Mickelson JR, McCue ME. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim Genet. 2014; 45:827-835.
  • [47]Trifonov VA, Stanyon R, Nesterenko AI, Fu B, Perelman PL, O’Brien PCM et al.. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res. 2008; 16:89-107.
  • [48]Piras FM, Nergadze SG, Poletto V, Cerutti F, Ryder OA, Leeb T et al.. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Cytogenet Genome Res. 2009; 126:165-172.
  • [49]Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome. Anim Genet. 2010; 41 Suppl 2:176-185.
  • [50]Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C, Khoriauli L et al.. Uncoupling of satellite DNA and centromeric function in the genus equus. PLoS Genet. 2010; 6: Article ID e1000845
  • [51]BLAT. http://genome. ucsc.edu/cgi-bin/hgBlat webcite
  • [52]Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002; 12:656-664.
  • [53]Jurka J. ERE1. http://www. girinst.org/protected/repbase_extract.php?access=ERE1 webcite
  • [54]BLAST Trace database. https://blast. ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=TraceArchive&PAGE_TYPE=BlastSearch&PROG_DEFAULTS=on webcite
  • [55]Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res. 2004; 14:1704-1710.
  • [56]Nergadze SG, Santagostino MA, Salzano A, Mondello C, Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol. 2007; 8:R260. BioMed Central Full Text
  • [57]Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton PE. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput Biol. 2007; 3: Article ID e137
  • [58]Steiner CC, Ryder OA. Molecular phylogeny and evolution of the Perissodactyla. Zool J Linn Soc. 2011; 163:1289-1303.
  • [59]Trifonov VA, Musilova P, Kulemsina AI. Chromosome evolution in Perissodactyla. Cytogenet Genome Res. 2012; 137:208-217.
  • [60]Wakefield S, Knowles J, Zimmermann W, van Dierendonck M. Chapter 7: status and action plan for the Przewalski’s horse (equus ferus przewalskii). In: Equids: zebras, asses and horses: status survey and conservation action plan. Moehlman PD, editor. IUCN, Gland; 2002: p.82-92.
  • [61]Table Browser. https://genome. ucsc.edu/cgi-bin/hgTables webcite
  • [62]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D et al.. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004; 32:D493-D496.
  • [63]Sakharkar MK, Chow VTK, Kangueane P. Distributions of exons and introns in the human genome. In Silico Biol. 2004; 4:387-393.
  • [64]Fedorova L, Fedorov A. Puzzles of the human genome: Why Do We need Our introns? Curr Genomics. 2005; 6:589-595.
  • [65]Gregory TR. Synergy between sequence and size in large-scale genomics. Nat Rev Genet. 2005; 6:699-708.
  • [66]Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. Biochem Mosc. 2008; 73:1519-1552.
  • [67]Shepard S, McCreary M, Fedorov A. The peculiarities of large intron splicing in animals. PLoS ONE. 2009; 4: Article ID e7853
  • [68]Krull M, Brosius J, Schmitz J. Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol. 2005; 22:1702-1711.
  • [69]Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010; 11:345-355.
  • [70]Ponicsan SL, Kugel JF, Goodrich JA. Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev. 2010; 20:149-155.
  • [71]Apone S, Hauschka SD. Muscle gene E-box control elements. Evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J Biol Chem. 1995; 270:21420-21427.
  • [72]Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ et al.. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol. 2002; 22:7066-7082.
  • [73]Jurka J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A. 1997; 94:1872-1877.
  • [74]Szak S, Pickeral O, Makalowski W, Boguski M, Landsman D, Boeke J. Molecular archeology of L1 insertions in the human genome. Genome Biol. 2002; 3:research0052. BioMed Central Full Text
  • [75]Vidale P, Magnani E, Nergadze SG, Santagostino M, Cristofari G, Smirnova A et al.. The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts. Chromosoma. 2012; 121:475-488.
  • [76]Smit AF. ERE2. http://www. girinst.org/protected/repbase_extract.php?access=ERE2 webcite
  • [77]Jurka J. ERE3. http://www. girinst.org/protected/repbase_extract.php?access=ERE3 webcite
  • [78]Wade CM. ERE4. http://www. girinst.org/protected/repbase_extract.php?access=ERE4 webcite
  • [79]Equus caballus (horse) Nucleotide BLAST. http://blast. ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=blastn&BLAST_PROG_DEF=megaBlast&BLAST_SPEC=OGP__9796__11760 webcite
  • [80]seq_contig.md. ftp://ftp. ncbi.nih.gov/genomes/Equus_caballus/mapview/seq_contig.md.gz webcite
  • [81]Smit AFA, Hubley R, Green P. RepeatMasker. http://www. repeatmasker.org/ webcite
  • [82]UCSC Genome Browser ftp. ftp://hgdownload. cse.ucsc.edu/goldenPath/equCab2/chromosomes/ webcite
  • [83]Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M et al.. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2014; 42:D764-D770.
  • [84]MultAlin. http://multalin. toulouse.inra.fr/multalin/ webcite
  • [85]Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988; 16:10881-10890.
  • [86]Purgato S, Belloni E, Piras FM, Zoli M, Badiale C, Cerutti F et al.. Centromere sliding on a mammalian chromosome. Chromosoma. 2015; 124:277-287.
  • [87]Carbone L, Nergadze SG, Magnani E, Misceo D, Francesca Cardone M, Roberto R et al.. Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics. 2006; 87:777-782.
  • [88]Anglana M, Bertoni L, Giulotto E. Cloning of a polymorphic sequence from the nontranscribed spacer of horse rDNA. Mamm Genome Off J Int Mamm Genome Soc. 1996; 7:539-541.
  • [89]Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R et al.. CpG-island promoters drive transcription of human telomeres. RNA. 2009; 15:2186-2194.
  • [90]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001; 25:402-408.
  • [91]A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2008. http://www. R-project.org
  文献评价指标  
  下载次数:10次 浏览次数:6次