期刊论文详细信息
BMC Systems Biology
A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network
Insik Shin2  Kwang-Hyun Cho1  Dongsan Kim1  Dongsup Kim1  Minho Lee1  Changki Hong2 
[1] Department of Bio and Brain Engineering, KAIST, Daejeon, Korea;Department of Computer Science, KAIST, Daejeon, Korea
关键词: Asynchronous Boolean networks;    Model checking;    Yeast cell cycle regulatory network;    Timing robustness;   
Others  :  1143552
DOI  :  10.1186/1752-0509-6-129
 received in 2011-10-26, accepted in 2012-08-30,  发布年份 2012
PDF
【 摘 要 】

Background

Cell cycle process of budding yeast (Saccharomyces cerevisiae) consists of four phases: G1, S, G2 and M. Initiated by stimulation of the G1 phase, cell cycle returns to the G1 stationary phase through a sequence of the S, G2 and M phases. During the cell cycle, a cell verifies whether necessary conditions are satisfied at the end of each phase (i.e., checkpoint) since damages of any phase can cause severe cell cycle defect. The cell cycle can proceed to the next phase properly only if checkpoint conditions are met. Over the last decade, there have been several studies to construct Boolean models that capture checkpoint conditions. However, they mostly focused on robustness to network perturbations, and the timing robustness has not been much addressed. Only recently, some studies suggested extension of such models towards timing-robust models, but they have not considered checkpoint conditions.

Results

To construct a timing-robust Boolean model that preserves checkpoint conditions of the budding yeast cell cycle, we used a model verification technique, ‘model checking’. By utilizing automatic and exhaustive verification of model checking, we found that previous models cannot properly capture essential checkpoint conditions in the presence of timing variations. In particular, such models violate the M phase checkpoint condition so that it allows a division of a budding yeast cell into two before the completion of its full DNA replication and synthesis. In this paper, we present a timing-robust model that preserves all the essential checkpoint conditions properly against timing variations. Our simulation results show that the proposed timing-robust model is more robust even against network perturbations and can better represent the nature of cell cycle than previous models.

Conclusions

To our knowledge this is the first work that rigorously examined the timing robustness of the cell cycle process of budding yeast with respect to checkpoint conditions using Boolean models. The proposed timing-robust model is the complete state-of-the-art model that guarantees no violation in terms of checkpoints known to date.

【 授权许可】

   
2012 Hong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329113401955.pdf 574KB PDF download
Figure 4. 74KB Image download
Figure 3. 73KB Image download
Figure 2. 54KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ: Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle. Mol Biol Cell 2000, 11:369-391.
  • [2]Charvin G, Cross FR, Siggia ED: Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle. Proceedings of the National Academy of Sciences 2009, 106(16):6632-6637.
  • [3]Shmulevich I, Kauffman SA, Aldana M: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(38):13439-13444.
  • [4]Kauffman SA: Metabolic stabiligy and epigenesis in randomly constructed genetic nets. J Theor Biol 1969, 22:437-467.
  • [5]Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, et al, Furtak K: A Protein Interaction Map of Drosophila melanogaster. Science 2003, 302(5651):1727-1736.
  • [6]Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 2002, 298(5594):799-804.
  • [7]Shen L, Chepelev I, Liu J, Wang W: Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation. BMC Syst Biol 2010, 4:128.
  • [8]Ding S, Wang W: Recipes and mechanisms of cellular reprogramming: a case study on budding yeast Saccharomyces cerevisiae. BMC Syst Biol 2011, 5:50.
  • [9]Eriksson O, Andersson T, Zhou Y, Tegner J: Decoding complex biological networks - tracing essential and modulatory parameters in complex and simplified models of the cell cycle. BMC Syst Biol 2011, 5:123.
  • [10]Helikar T, Konvalina J, Heidel J, Rogers JA: Emergent decision-making in biological signal transduction networks. Proceedings of the National Academy of Sciences 2008, 105(6):1913-1918.
  • [11]Faure A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 22(14):e124-e131.
  • [12]Davidich MI, Bornholdt S: Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast. PLoS ONE 2008, 3(2):e1672.
  • [13]Mendoza L, Thieffry D, Alvarez-Buylla ER: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 1999, 15(7):593-606.
  • [14]Albert R, Othmer HG: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1-18.
  • [15]Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinf 2006, 7:56.
  • [16]Chaves M, Albert R, Sontagm ED: Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235(3):431-449.
  • [17]Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B: A Logical Model Provides Insights into T Cell Receptor Signaling. PLoS Comput Biol 2007, 3(8):e163.
  • [18]Bornholdt S: Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 2008, 5(Suppl 1):S85-S94.
  • [19]Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell cycle network is robustly designed. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:4781-4786.
  • [20]Clarke EM, Grumberg OJ, Peled DA: Model Checking. Cambridge: The MIT Press; 1999.
  • [21]Heljanko K: Model Checking the Branching Time Temporal Logic CTL. Research Report A45, Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland 1997.
  • [22]Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ: Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004, 15:3841-3862.
  • [23]Calzone L: Temporal organization of the budding yeast cell cycle: General principles and detailed simulations. PhD thesis,Virginia Polytechnic Institute and State University, Department of Biology 2003
  • [24]Irons D: Logical analysis of the budding yeast cell cycle. J Theor Biol 2009, 257(4):543-559.
  • [25]Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, Young RA: Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle. Cell 2001, 106(6):697-708.
  • [26]Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000, 406:90-94.
  • [27]Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD, Dalton S: Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 2000, 10(15):896-906.
  • [28]MacKay VL, Mai B, Waters L, Breeden LL: Early Cell Cycle Box-Mediated Transcription of CLN3 and SWI4 Contributes to the Proper Timing of the G1-to-S Transition in Budding Yeast. Mol Cell Biol 2001, 21(13):4140-4148.
  • [29]Lydall D, Ammerer G, Nasmyth K: A new role for MCM1 in yeast: cell cycle regulation of Swi5 transcription. Genes and Dev 1991, 5:2405-2419.
  • [30]Mangla K, Dill DL, Horowitz MA: Timing Robustness in the Budding and Fission Yeast Cell Cycles. PLoS ONE 2010, 5:e8906.
  • [31]Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A: NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In Proc. International Conference on Computer-Aided Verification (CAV 2002) Volume 2404 of. LNCS, Copenhagen, Denmark: Springer; 2002.
  • [32]Amon A, Tyers M, Futcher B, Nasmyth K: Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 1993, 74:993-1007.
  • [33]Maher M, Cong F, Kindelberger D, Nasmyth K, Dalton S: Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol Cell Biol 1995, 15:3129-3137.
  • [34]von Dassow G, Meir E, Munro EM, Odell GM: The segment polarity network is a robust develpmental module. Nature 2000, 406:188-192.
  • [35]Sobie EA: Computational Modeling of the Cell Cycle. Science Signaling 2011, 4(192):tr11.
  • [36]Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B: Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 2011, 8(61):1128-1141.
  • [37]Larson DR: What do expression dynamics tell us about the mechanism of transcription? Curr Opin Genet Dev 2011, 21(5):591-599.
  • [38]Peil K, Varv S, Looke M, Kristjuhan K, Kristjuhan A: Uniform Distribution of Elongating RNA Polymerase II Complexes in Transcribed Gene Locus. J Biol Chem 2011, 286(27):23817-23822.
  • [39]Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J: Periodic gene expression program of the fission yeast cell cycle. Nat Genet 2004, 36:809-817.
  • [40]Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES, Hartemink AJ, Haase SB: Global control of cell cycle transcription by coupled CDK and network oscillators. Nature 2008, 453:944-947.
  • [41]Grumberg O, Veith H (Eds): 25 Years of Model Checking - History, Achievements, Perspectives, Volume 5000 of Lecture Notes in Computer Science,. Springer; 2008.
  • [42]Pelanek R: Fighting State Space Explosion: Review and Evaluation. In Formal Methods for Industrial Critical Systems, Volume 5596 of Lecture Notes in Computer Science. Edited by Cofer D. Fantechi A: Springer Berlin / Heidelberg; 2009:37-52.
  • [43]Rao CV, Wolf DM, Arkin AP: Control, exploitation and tolerance of intracellular noise. Nature 2002, 420:231-237.
  • [44]McAdams H, Arkin A: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences 1997, 94(3):814-819.
  • [45]Hasty J, McMillen D, Isaacs F, Collins JJ: Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2001, 2:268-279.
  • [46]Kitano H: Systems Biology: A Brief Overview. Science 2002, 295(5560):1662-1664.
  • [47]Csete ME, Doyle JC: Reverse Engineering of Biological Complexity. Science 2002, 295(5560):1664-1669.
  • [48]Kitano H: Biological robustness. Nat Rev Genet 2004, 5:826-837.
  • [49]Kitano H: Towards a theory of biological robustness. Mol Syst Biol 2007, 3:137.
  • [50]Chen BS, Chang YT: A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises. BMC Syst Biol 2008, 2:103.
  • [51]Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F: Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 2009, 459:592-595.
  • [52]Zhang Y, Qian M, Ouyang Q, Deng M, Li F, Tang C: Stochastic model of yeast cell-cycle network. Physica D: Nonlinear Phenomena 2006, 219:35-39.
  • [53]Braunewell S, Bornholdt S: Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J Theor Biol 2007, 245(4):638-643.
  • [54]Ge H, Qian H, Qian M: Synchronized dynamics and non-equilibrium steady states in a stochastic yeast cell cycle network. Math Biosci 2008, 211:132-152.
  • [55]Okabe Y, Sasai M: Stable Stochastic Dynamics in Yeast Cell Cycle. Biophys J 2007, 93(10):3451-3459.
  • [56]Faure A, Chaouiya C, Ciliberto A, Thieffry D: Logical modelling and analysis of the budding yeast cell cycle. BMC Bioinf 2007, 8(Suppl 8):P1.
  • [57]Akutsu T, Miyano S, Kuhara S: Identification Of Genetic Networks From A Small Number Of Gene Expression Patterns Under The Boolean Network Model. In Proceedings of the Pacific Symposium on Biocomputing,. Big Island, Hawaii: World Scientific Press; 1999:17-28.
  • [58]Ideker TE, Thorsson V, Karp RM: Discovery of Regulatory Interactions Through Perturbation: Inference and Experimental Design. In Proceedings of the Pacific Symposium on Biocomputing,. Oahu, Hawaii: World Scientific Press; 2000:305-316.
  • [59]Maki Y, Tominaga D, Okamoto M, Eguchi Y, Watanabe S: Development Of A System For The Inference Of Large Scale Genetic Networks. In Proceedings of the Pacific Symposium on Biocomputing,. Big Island, Hawaii: World Scientific Press; 2001:446-458.
  • [60]LÃhdesmÃki H, Shmulevich I, Yli-Harja O: On learning gene regulatory networks under the Boolean network model. Machine Learning 2003, 147-167.
  • [61]Schaub M, Henzinger T, Fisher J: Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC Syst Biol 2007, 1:4.
  • [62]Fisher J, Henzinger T, Mateescu M, Piterman N: Bounded Asynchrony: Concurrency for Modeling Cell-Cell Interactions. In Formal Methods in Systems Biology, Volume 5054 of Lecture Notes in Computer Science. Edited by Fisher J: Springer Berlin / Heidelberg; 2008:17-32.
  • [63]Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 24(17):1917-1925.
  • [64]Fages F, Soliman S, Chabrier-rivier N: Modelling and querying interaction networks in the biochemical abstract machine biocham. J Biol Phys Chem 2004, 4:64-73.
  • [65]Koh CH, Nagasaki M, Saito A, Li C, Wong L, Miyano S: MIRACH: efficient model checker for quantitative biological pathway models. Bioinformatics 2011, 27(5):734-735.
  • [66]Li C, Nagasaki M, Ueno K, Miyano S: Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension. BMC Syst Biol 2009, 3:42.
  • [67]Nakajima A, Isshiki T, Kaneko K, Ishihara S: Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila Neurogenesis. PLoS Comput Biol 2010, 6(4):e1000760.
  • [68]Lee T, Yao G, Nevins J, You L: Sensing and Integration of Erk and PI3K Signals by Myc. PLoS Comput Biol 2008, 4(2):e1000013.
  文献评价指标  
  下载次数:23次 浏览次数:18次