期刊论文详细信息
BMC Musculoskeletal Disorders
Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema
Flávia Alessandra Guarnier1  Rubens Cecchini3  Sara Santos Bernardes2  Cláudia Roberta Brunnquell3  Alessandra Lourenço Cecchini2  Jair Tonon1 
[1] Laboratory of Free Radicals and Pathophysiology, Department of General Pathology, Rodovia Celso Garcia Cid, PR445, km 380 Campus Universitário, Londrina 86051-990, Brazil;Laboratory of Molecular Pathology, Department of General Pathology, Rodovia Celso Garcia Cid, PR445, km 380 Campus Universitário, Londrina, 86051-990, Brazil;Laboratory of Free Radicals and Pathophysiology, Department of General Pathology, Rodovia Celso Garcia Cid, PR445, km 380 Campus Universitário, Londrina, 86051-990, Brazil
关键词: Chymotrypsin-like activity;    Reactive oxygen species;    Skeletal muscle loss;    Cachexia;    Emphysema;   
Others  :  1134100
DOI  :  10.1186/1471-2474-14-39
 received in 2012-07-25, accepted in 2013-01-15,  发布年份 2013
PDF
【 摘 要 】

Background

Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD). Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner.

Methods

We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20) and 40 mg/mL (E40) papain.

Results

The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p < 0.05) and E40 (52.27 ± 4.7; crossed the alveolar intercepts) groups. As compared to the control group, there was a reduction on body (171.6 ± 15.9 g) and muscle weight (251.87 ± 24.87 mg) in the E20 group (157.5 ± 10.3 mg and 230.12 ± 23.52 mg, for body and muscle weight, respectively), which was accentuated in the E40 group (137.4 ± 7.2 g and 197.87 ± 10.49 mg, for body and muscle weight, respectively). Additionally, the thiobarbituric acid reactive substances (TBARS), tert-butyl hydroperoxide-initiated chemiluminescence (CL), carbonylated proteins, and chymotrypsin-like proteolytic activity were elevated in the E40 group as compared to the E20 group (p < 0.05 for all comparisons). The severity of emphysema significantly correlated with the progressive increase in CL (r = −0.95), TBARS (r = −0.98), carbonyl proteins (r = −0.99), and chymotrypsin-like proteolytic activity (r = −0.90). Furthermore, augmentation of proteolytic activity correlated significantly with CL (r = 0.97), TBARS (r = 0.96), and carbonyl proteins (r = 0.91).

Conclusions

Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of oxidative stress in a severity-dependent manner.

【 授权许可】

   
2013 Tonon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305073233726.pdf 639KB PDF download
Figure 4. 55KB Image download
Figure 3. 26KB Image download
Figure 2. 85KB Image download
Figure 1. 192KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wüst RC, Degens H: Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis 2007, 2(3):289-300.
  • [2]Mattson JP, Sun J, Murray DM, Poole DC: Lipid peroxidation in the skeletal muscle of hamsters with emphysema. Pathophysiology 2002, 8(3):215-221.
  • [3]Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, Maltais F: Midthight musclr cross-sectional área is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002, 166(6):809-813.
  • [4]Doucet M, Russell AP, Léger B, Debigaré R, Joanisse DR, Caron MA, LeBlanc P, Maltais F: Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007, 176(3):261-269.
  • [5]Gosselink R, Troosters T, Decramer M: Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 1996, 153(3):976-980.
  • [6]Maltais F, LeBlanc P, Simard C, Jobin J, Bérubé C, Bruneau J, Carrier L, Belleau R: Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996, 154(2 Pt1):442-447.
  • [7]Tada H, Kato H, Misawa T, Sasaki F, Hayashi S, Takahashi H, Kutsumi Y, Ishizaki T, Nakai T, Miyabo S: 31P-nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with chronic lung disease and congestive heart failure. Eur Respir J 1992, 5(2):163-169.
  • [8]Fusco LB, Pêgo-Fernandes PM, Xavier AM, Pazetti R, Rivero DHRF, Capelozzi VL, Jatene FB: [Modelo experimental de enfisema pulmonar em ratos induzido por papaína]. J Pneumol 2002, 28(1):205-219.
  • [9]Takaro T, White SM: Emphysema. Am Rev Respir Dis 1993, 108:334-337.
  • [10]Monteiro R, Jatene FB, Pazetti R, Correia AT, Manoel LA, Bernardo WA, Rivero DHRF, Oliveira AS: [Avaliação das alterações morfológicas cardíacas secundárias ao enfisema pulmonar: estudo experimental em ratos]. Rev Bras Cir Cardiovasc 2004, 19(4):341-347.
  • [11]Fermoselle C, Sanchez F, Barreiro E: Reduction of muscle mass mediated by myostatin in an experimental model of pulmonary emphysema. Arch Bronconeumol 2011, 47(12):590-598.
  • [12]Mattson JP, Poole DC: Pulmonary emphysema decreases hamster skeletal muscle oxidative enzyme capacity. J Appl Physiol 1998, 85(1):210-214.
  • [13]Barnes PJ: Reactive oxygen species and airway inflammation. Free Radic Biol Med 1990, 9(3):235-243.
  • [14]Supinski G, Nethery D, Stofan D, DiMarco A: Effect of free radical scavengers on diaphragmatic fatigue. Am J Respir Crit Care Med 1997, 155(2):622-629.
  • [15]Powers SK, Duarte J, Kavazis AN, Talbert EE: Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 2010, 95(1):1-9.
  • [16]Smuder AJ, Min K, Hudson MB, Kavazis AN, Kwon OS, Nelson WB, Powers SK: Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol 2012, 112(3):501-510.
  • [17]Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, Powers SK: Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Med Sci Sports Exerc 2012, 44(3):397-405.
  • [18]Powers SK, Smuder AJ, Criswell DS: Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 2011, 15(9):2519-2528.
  • [19]Li YP, Chen Y, Li AS, Reid MB: Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 2003, 285:C806-C812.
  • [20]Grune T, Davies KJ: The proteasomal system and HNE-modified proteins. Mol Aspects Med 2003, 24(4–5):195-204.
  • [21]Debigaré R, Côté CH, Maltais F: Ubiquitination and proteolysis in limb and respiratory muscles of patients with chronic obstructive pulmonary disease. Proc Am Thorac Soc 2010, 7(1):84-90.
  • [22]Mattson JP, Delp MD, Poole DC: Differential effects of emphysema on skeletal muscle fibre atrophy in hamsters. Eur Respir J 2004, 23(5):703-707.
  • [23]Mattson JP, Miller M, Poole DC, Delp MD: Fiber composition and oxidative capacity of hamster skeletal muscle. J Histochem Cytochem 2002, 50(12):1685-1692.
  • [24]Reznick AZ, Packer L: Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994, 233:357-363.
  • [25]Guarnier FA, Cecchini AL, Suzukawa AA, Maragno ALGC, Simão ANC, Gomes MD, Cecchini R: Time course of skeletal muscle loss and oxidative stress in rats with Walker 256 solid tumor. Muscle Nerve 2010, 42(6):950-958.
  • [26]Oliveira FJA, Cecchini R: Oxidative stress of liver in hamsters infected with Leishmania (L.) chagasi. J Parasitol 2000, 86(5):1067-1072.
  • [27]Gonzalez-Flecha B, Llesuy S, Boveris A: Hydroperoxide initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Rad Biol Med 1991, 10:93-100.
  • [28]Repetto M, Reides C, Carretero MLG, Costa M, Griemberg G, Llesuy S: Oxidative stress in blood of HIV infected patients. Clin Chim Acta 1996, 255:107-117.
  • [29]Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [30]Miller GL: Protein determination for larger numbers of samples. Anal Chem 1959, 31:964-968.
  • [31]Mattson JP, Martin JC: Emphysema-induced reductions in locomotory skeletal muscle contractile function. Exp Physiol 2005, 90(4):519-525.
  • [32]Barbosa DS, Cecchini R, El Kadri MZ, Rodriguez MA, Burini RC, Dichi I: Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 2003, 19(4):1-83.
  • [33]Bernard S, LeBlanc P, Whittona F, Carrier G, Jobin J, Belleau R, Maltais F: Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998, 158:629-634.
  • [34]Halliwell B, Gutteridge JMC: Free radicals in biology and medicine. 4th edition. Oxford: Oxford University Press; 2007.
  • [35]Palace VP, Hill MF, Farahmand F, Singal PK: Mobilization of antioxidant vitamin pools and hemodynamic function after myocardial infarction. Circulation 1999, 99(1):121-126.
  • [36]Brotto MA, Nosek TM: Hydrogen peroxide disrupts Ca2+ release from the sarcoplasmic reticulum of rat skeletal muscle fibers. J Appl Physiol 1996, 81(2):731-737.
  • [37]Andrade FH, Reid MB, Allen DG, Westerblad H: Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998, 509:565-575.
  • [38]Andersson U, Leighton B, Young ME, Blomstrand E, Newsholme EA: Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem Biophys Res Commun 1998, 249(2):512-516.
  • [39]Zimiani K, Guarnier FA, Miranda HC, Watanabe MAE, Cecchini R: Nitric oxide mediated oxidative stress injury in rat skeletal muscle subjected to ischemia/reperfusion as evaluated by chemiluminescence. Nitr Ox Biol Chem 2005, 13:196-203.
  • [40]Zamburlini A, Maiorino M, Barbera P, Pastorino AM, Roveri A, Cominacini L, Ursini F: Measurement of lipid hydroperoxides in plasma lipoproteins by high-sensitive “single photon counting” luminometer. Biochim Biophys Acta 1995, 1256:233-240.
  • [41]Llesuy SF, Meilei J, Gonzalez-Flecha BS, Boveris A: Myocardical damage inducing by doxorubicin: hydroperoxide-initiated chemiluminescence and morphology. Free Rad Biol Med 1990, 8:25-64.
  • [42]Gomes-Marcondes MCC, Tisdale MJ: Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett 2002, 180:69-74.
  • [43]Grune T, Reinheckel T, Joshi M, Davies KJA: Proteolysis in cultured liver epithelial cells during oxidative stress. J Biol Chem 1995, 270(5):2344-2351.
  • [44]Davies KA: Degradation of oxidized proteins by 20S proteasome. Biochimie 2001, 83:301-310.
  • [45]Mastrocola R, Reffo P, Penna F, Tomasinelli CE, Boccuzzi G, Baccino FM, Aragno M, Costelli P: Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Rad Biol Med 2008, 44:584-593.
  • [46]Shang F, Gong X, Taylor A: Activity of ubiquitin-dependent pathway in response to oxidative stress. J Biol Chem 1997, 272(37):23086-23093.
  文献评价指标  
  下载次数:42次 浏览次数:4次