期刊论文详细信息
BMC Neuroscience
Online detection of error-related potentials boosts the performance of mental typewriters
Matthias S Treder1  Benjamin Blankertz1  Nico M Schmidt2 
[1] Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany;Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Switzerland, Andreasstrasse 15, 8050 Zurich, Switzerland
关键词: Information transfer rate;    Error-related potentials;    ERP-Speller;    Electroencephalography;    Brain-computer interface;   
Others  :  1170838
DOI  :  10.1186/1471-2202-13-19
 received in 2011-10-14, accepted in 2012-02-15,  发布年份 2012
PDF
【 摘 要 】

Background

Increasing the communication speed of brain-computer interfaces (BCIs) is a major aim of current BCI-research. The idea to automatically detect error-related potentials (ErrPs) in order to veto erroneous decisions of a BCI has been existing for more than one decade, but this approach was so far little investigated in online mode.

Methods

In our study with eleven participants, an ErrP detection mechanism was implemented in an electroencephalography (EEG) based gaze-independent visual speller.

Results

Single-trial ErrPs were detected with a mean accuracy of 89.1% (AUC 0.90). The spelling speed was increased on average by 49.0% using ErrP detection. The improvement in spelling speed due to error detection was largest for participants with low spelling accuracy.

Conclusion

The performance of BCIs can be increased by using an automatic error detection mechanism. The benefit for patients with motor disorders is potentially high since they often have rather low spelling accuracies compared to healthy people.

【 授权许可】

   
2012 Schmidt et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417031949321.pdf 1195KB PDF download
Figure 9. 242KB Image download
Figure 8. 43KB Image download
Figure 7. 64KB Image download
Figure 6. 108KB Image download
Figure 5. 95KB Image download
Figure 4. 72KB Image download
Figure 3. 16KB Image download
Figure 2. 42KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Kübler A, Müller KR: An introduction to brain computer interfacing. In Toward Brain-Computer Interfacing. Edited by Dornhege G, del R Millán J, Hinterberger T, McFarland D, Müller KR. Cambridge, MA: MIT Press; 2007:1-25.
  • [2]Kübler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N: Brain-computer communication: unlocking the locked in. Psychol Bull 2001, 127(3):358-375.
  • [3]Kübler A, Nijboer F, Birbaumer N: Brain-Computer Interfaces for Communication and Motor Control - Perspectives on Clinical Applications. In Toward Brain-Computer Interfacing. Edited by Dornhege G, de R Millán J, Hinterberger T, McFarland D, Müller KR. Cambridge: MIT Press; 2007:373-391.
  • [4]Huggins JE, Wren PA, Gruis KL: What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011, 12:318-324. [http://informahealthcare.com/doi/abs/10.3109/17482968.2011.5 webcite 72978]
  • [5]Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kübler A: A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 2008, 119:1909-1916.
  • [6]Sellers EW, Vaughan TM, Wolpaw JR: A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis 2010, 5:449-455. [http://informahealthcare.com/doi/abs/10.3109/174829610037774 webcite 70]
  • [7]McFarland DJ, Krusienski DJ, Sarnacki WA, Wolpaw JR: Emulation of computer mouse control with a noninvasive brain-computer interface. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757111] webciteJ Neural Eng 2008, 5:101-110.
  • [8]Leeb R, Friedman D, Müller-Putz G, Scherer R, Slater M, Pfurtscheller G: Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic. Comput Intell Neurosci 2007, 2007:79642.
  • [9]Farwell L, Donchin E: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988, 70:510-523.
  • [10]Lenhardt A, Kaper M, Ritter H: An adaptive P300-based online brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2008, 16:121-130.
  • [11]Majaranta P, MacKenzie S, Aula A, Räihä KJ: Effects of feedback and dwell time on eye typing speed and accuracy. Univ Access Inf Soc 2006, 5(2):199-208.
  • [12]Treder MS, Blankertz B: (C)overt attention and visual speller design in an ERP-based brain-computer interface. [http://www.behavioralandbrainfunctions.com/content/6/1/28] webciteBehav Brain Funct 2010, 6:28. BioMed Central Full Text
  • [13]Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G: Does the "P300" speller depend on eye gaze? J Neural Eng 2010, 7:056013.
  • [14]Acqualagna L, Treder MS, Schreuder M, Blankertz B: A novel brain-computer interface based on the rapid serial visual presentation paradigm. [http://dx.doi.org/10.1109/IEMBS.2010.5626548] webciteConf Proc IEEE Eng Med Biol Soc 2010, 2010:2686-2689.
  • [15]Treder MS, Schmidt NM, Blankertz B: Gaze-independent brain-computer interfaces based on covert attention and feature attention. [http://dx.doi.org/10.1088/1741-2560/8/6/066003] webciteJ Neural Eng 2011, 8(6):066003. [Open Access]
  • [16]Liu Y, Zhou Z, Hu D: Gaze independent brain-computer speller with covert visual search tasks. Clin Neurophysiol 2011, 122(6):1127-1136.
  • [17]Treder MS, Schmidt NM, Blankertz B: Towards gaze-independent visual brain-computer interfaces. [http://dx.doi.org/10.3389/conf.fncom.2010.51.00117] webciteFront Comput Neurosci 2010. [Conference Abstract: Bernstein Conference on Computational Neuroscience 2010]
  • [18]Schreuder M, Höhne J, Treder MS, Blankertz B, Tangermann M: Performance Optimization of ERP-Based BCIs Using Dynamic Stopping. Front Comput Neurosci 2011, 2011:4580-4583.
  • [19]Höhne J, Schreuder M, Blankertz B, Tangermann M: Two-dimensional auditory P300 Speller with predictive text system. [http://dx.doi.org/10.1109/IEMBS.2010.5627379] webciteConf Proc IEEE Eng Med Biol Soc 2010, 2010:4185-4188.
  • [20]Zhang H, Guan C, Wang C: Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 2008, 55:1754-1763.
  • [21]Holroyd C, Coles M: The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 2002, 109:679-709.
  • [22]Falkenstein M, Hoormann J, Christ S, Hohnsbein J: ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 2000, 51(2-3):87-107.
  • [23]Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller KR, Kunzmann V, Losch F, Curio G: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial eeg analysis. [http://dx.doi.org/10.1109/TNSRE.2003.814456] webciteIEEE Trans Neural Syst Rehabil Eng 2003, 11(2):127-131.
  • [24]Parra L, Spence C, Gerson A, Sajda P: Response error correction - a demonstration of improved human-machine performance using real-time eeg monitoring. IEEE Trans Neural Syst Rehabil Eng 2003, 11(2):173-177.
  • [25]Schie HTV, Mars RB, Coles MG, Bekkering H: Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 2004, 7(5):549-554.
  • [26]Ferrez P, Millán J: You are wrong! - Automatic detection of interaction errors from brain waves. 19th International Joint Conference on Artificial Intelligence 2005, 1413-1418.
  • [27]Buttfield A, Ferrez P, Millán JDR: Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Syst Rehabil Eng 2006, 14:164-168.
  • [28]Ferrez P, Millán J: Error-related eeg potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 2008, 55:923-929.
  • [29]Spüler M: Online Erkennung von Fehlerpotentialen zur Fehlerkorrektur bei einem P300 Brain-Computer Interface. Eberhard Karls Universität Tübingen 2010. [Diploma thesis]
  • [30]Dal Seno B, Matteucci M, Mainardi L: Online Detection of P300 and Error Potentials in a BCI Speller. [http://dx.doi.org/10.1155/2010/307254] webciteComput Intell Neurosci 2010, 2010:307254.
  • [31]Combaz A, Chumerin N, Manyakov NV, Robben A, Suykens JAK, Van Hulle MM: Error-related potential recorded by EEG in the context of a p300 mind speller brain-computer interface. [http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5589217] webciteIEEE International Workshop on Machine Learning for Signal Processing, IEEE 2010:65-70.
  • [32]Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G: EEG-based communication: presence of an error potential. Clin Neurophysiol 2000, 111:2138-2144.
  • [33]Llera A, van Gerven M, Gómez V, Jensen O, Kappen H: On the use of interaction error potentials for adaptive brain computer interfaces. Neural Netw 2011, 24(10):1120-1127. [http://www.sciencedirect.com/science/article/pii/S0893608011 webcite 001481]
  • [34]Dal Seno B, Matteucci M, Mainardi L: A genetic algorithm for automatic feature extraction in P300 detection. Proceedings of the International Joint Conference on Neural Networks (IJCNN'08) 2008, 3145-3152.
  • [35]Ishihara S: Tests for colour-blindness. Tokyo: Hongo Harukicho; 1919.
  • [36]Venthur B, Scholler S, Williamson J, Dähne S, Treder MS, Kramarek MT, Müller KR, Blankertz B: Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience. [http://dx.doi.org/10.3389/fnins.2010.00179] webciteFront Neuroscience 2010, 4:179.
  • [37]Straw AD: Vision egg: an open-source library for realtime visual stimulus generation. Front Neuroinformatics 2008, 2:4.
  • [38]Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR: Single-trial analysis and classification of ERP components - a tutorial. [http://dx.doi.org/10.1016/j.neuroimage.2010.06.048] webciteNeuroImage 2011, 56:814-825.
  文献评价指标  
  下载次数:72次 浏览次数:9次