期刊论文详细信息
BMC Evolutionary Biology
Analyses of amplified fragment length polymorphisms (AFLP) indicate rapid radiation of Diospyros species (Ebenaceae) endemic to New Caledonia
Rosabelle Samuel1  Mark W Chase3  Sutee Duangjai4  Jérôme Munzinger2  Ovidiu Paun1  Barbara Turner1 
[1] Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University Vienna, Rennweg 14, 1030 Wien, Austria;IRD, UMR AMAP, TA A51/PS2, 34398 Montpellier Cedex 5, France;School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia;Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
关键词: Woody plants;    Species radiation;    Progenitor/derivative relationships;    Morphological diversification;    Island flora;    Cryptic species;   
Others  :  858201
DOI  :  10.1186/1471-2148-13-269
 received in 2013-08-14, accepted in 2013-12-09,  发布年份 2013
PDF
【 摘 要 】

Background

Radiation in some plant groups has occurred on islands and due to the characteristic rapid pace of phenotypic evolution, standard molecular markers often provide insufficient variation for phylogenetic reconstruction. To resolve relationships within a clade of 21 closely related New Caledonian Diospyros species and evaluate species boundaries we analysed genome-wide DNA variation via amplified fragment length polymorphisms (AFLP).

Results

A neighbour-joining (NJ) dendrogram based on Dice distances shows all species except D. minimifolia, D. parviflora and D. vieillardii to form unique clusters of genetically similar accessions. However, there was little variation between these species clusters, resulting in unresolved species relationships and a star-like general NJ topology. Correspondingly, analyses of molecular variance showed more variation within species than between them. A Bayesian analysis with BEAST produced a similar result. Another Bayesian method, this time a clustering method, STRUCTURE, demonstrated the presence of two groups, highly congruent with those observed in a principal coordinate analysis (PCO). Molecular divergence between the two groups is low and does not correspond to any hypothesised taxonomic, ecological or geographical patterns.

Conclusions

We hypothesise that such a pattern could have been produced by rapid and complex evolution involving a widespread progenitor for which an initial split into two groups was followed by subsequent fragmentation into many diverging populations, which was followed by range expansion of then divergent entities. Overall, this process resulted in an opportunistic pattern of phenotypic diversification. The time since divergence was probably insufficient for some species to become genetically well-differentiated, resulting in progenitor/derivative relationships being exhibited in a few cases. In other cases, our analyses may have revealed evidence for the existence of cryptic species, for which more study of morphology and ecology are now required.

【 授权许可】

   
2013 Turner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723094736822.pdf 955KB PDF download
35KB Image download
43KB Image download
63KB Image download
105KB Image download
83KB Image download
【 图 表 】

【 参考文献 】
  • [1]Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Henss JM, Smith JF, Wood KR, Sytsma KJ: Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc R Soc B 2009, 276:407-146.
  • [2]Knope ML, Morden CW, Funk VA, Fukami T: Area and the rapid radiation of Hawaiian Bidens (Asteraceae). J Biogeogr 2012, 39:1206-1216.
  • [3]Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB: Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMEX; 2004.
  • [4]Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J: Biodiversity hotspots for conservation priorities. Nature 2000, 403:853-858.
  • [5]Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon J-M, Chalopin M: Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie. Adansonia 2012, 34:177-219.
  • [6]Lowry PP II: Diversity, endemism and extinction in the flora of New Caledonia: a review. In Rare, threatened, and endangered floras of Asia and the Pacific rim. Edited by Peng CF, Lowry PPII. Taiwan: Institute of Botany, Taipei; 1998:181-206.
  • [7]Pelletier B, Payri C, Richer De Forges B: Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In Compendium of marine species from New Caledonia, Documents Scientifiques et Techniques II4. New Caledonia: Institut de Recherche pour le Développement Nouméa; 2006:17-30.
  • [8]Maurizot P, Vendé-Leclerc M: New Caledonia geological map, scale 1/500000. Direction de l’Industrie, des Mines et de l’Energie - Service de la Géologie de Nouvelle-Calédonie, Bureau de Recherches Géologiques et Minières 2009.
  • [9]Pillon Y, Munzinger J, Amir H, Lebrun M: Ultramafic soils and species sorting in the flora of New Caledonia. J Ecol 2010, 98:1108-1116.
  • [10]Jaffré T, Rigault F, Munzinger J: La végétation. In Atlas de la Nouvelle-Calédonie. Edited by Bonvallot J, Gay J-C, Habert E. Nouméa: IRD Editions; 2012:77-80.
  • [11]Duangjai S, Wallnöfer B, Samuel R, Munzinger J, Chase MW: Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions. Am J Bot 2006, 93:1808-1827.
  • [12]Duangjai S, Samuel R, Munzinger J, Forest F, Wallnöfer B, Barfuss MHJ, Fischer G, Chase MW: A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Mol Phylogenet Evol 2009, 52:602-620.
  • [13]Turner B, Munzinger J, Duangjai S, Temsch EM, Stockenhuber R, Barfuss MHJ, Chase MW, Samuel R: Molecular phylogenetic of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol Phylogenet Evol 2013, 69:740-763.
  • [14]Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23:4407-4414.
  • [15]Tremetsberger K, Stuessy TF, Kadlec G, Urtubey E, Baeza CM, Beck SG, Valdebenito HA, Ruas CF, Matzenbacher NI: AFLP phylogeny of South American species of Hypochaeris (Asteraceae, Lactuceae). Syst Bot 2006, 31:610-626.
  • [16]Koopman WJM, Zevenbergen MJ, van den Berg RG: Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. Am J Bot 2001, 88:1881-1887.
  • [17]Richardson JE, Fay MF, Cronk QCB, Chase MW: Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 2003, 57:816-827.
  • [18]Despré L, Giells L, Redoutet B, Taberlet P: Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Mol Phylogenet Evol 2003, 27:185-196.
  • [19]Paun O, Schönswetter P, Winkler M, Tribsch A, IntraBioDiv Consortium: Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol Ecol 2008, 17:4263-4275.
  • [20]Schulte K, Silvestro D, Kiehlmann E, Vesely S, Novoa P, Zizka G: Detection of recent hybridization between sympatric Chilean Puya species (Bromeliaceae) using AFLP markers and reconstruction of complex relationships. Mol Phylogenet Evol 2010, 57:1105-1119.
  • [21]Jabaily RS, Sytsma KJ: Historical biogeography and life-history evolution of Andean Puya (Bromeliaceae). Bot J Linn Soc 2012, 171:201-224.
  • [22]Gaudeul M, Rouhan G, Gardner MF, Hollingsworth PM: AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae). Am J Bot 2012, 99:68-81.
  • [23]Koopman WJM: Phylogenetic signal in AFLP data sets. Syst Biol 2005, 54:197-217.
  • [24]Degnan JH, Rosenberg NA: Discordance of species trees with their most likely gene trees. PLoS Genet 2006, 2:762-768.
  • [25]Meudt HM, Clarke AC: Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 2007, 12:106-117.
  • [26]Bussell JD, Waycott M, Chappill JA: Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol, Evol Systematics 2005, 7:3-26.
  • [27]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [28]Vigouroux Y, Glaubitz JC, Matsouka Y, Goddman MM, Sánchez GJ, Doebley J: Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 2008, 94:1240-1253.
  • [29]Glor RE: Phylogenetic insights on adaptive radiation. Ann Rev Ecol, Evol Systematics 2010, 41:251-270.
  • [30]Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC: Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 2011, 21:1838-1844.
  • [31]White F: Flore de la Nouvelle-Calédonie et Dépendances. 19. Ébénacées. Paris: Muséum National d’Histoire Naturelle; 1993.
  • [32]Kapralov MV, Votintseva AA, Filatov DA: Molecular adaptation during a rapid adaptive radiation. Mol Biol Evol 2013, 30:1051-1059.
  • [33]Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC: Copy number variation and transposable elements feature in recent ongoing adaptation at the Cyp6g1 locus. PLoS Genet 2010, 6:e1000998.
  • [34]Pintaud J-C, Tanguy J, Puig H: Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia. C R Acad Sci 2011, 324:453-463.
  • [35]Pillon Y, Hopkins HC, Munzinger J, Amir H, Chase MW: Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Bot J Linn Soc 2009, 161:137-152.
  • [36]Poncet V, Munoz F, Munzinger J, Pillon Y, Gomez C, Couderc M, Tranchant-Dubreuil C, Hamon S, de Kochko A: Phylogeography and niche modelling of the relict plant Amborella trichopoda (Amborellaceae) reveal multiple Pleistocene refugia in New Caledonia. Mol Ecol 2013. doi:10.1111/mec.12554
  • [37]Bennett KD: Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 1990, 16:11-21.
  • [38]Kane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH: Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution 2009, 63:2061-2075.
  • [39]Meudt HM, Lockhart PJ, Bryant D: Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evol Biol 2009, 9:111. BioMed Central Full Text
  • [40]Pillon Y, Munzinger J, Amir H, Hopkins HC, Chase MW: Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae). Mol Ecol 2009, 18:2263-2275.
  • [41]Murienne J, Guilbert E, Grandcolas P: Species diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species distribution modelling. Biol J Linn Soc 2009, 97:177-184.
  • [42]Givnish TJ, Montgomery RA, Goldstein G: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am J Bot 2004, 91:228-246.
  • [43]Baldwin BG, Sanderson MJ: Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 1998, 95:9402-9406.
  • [44]Barraclough TG: What can phylogenetics tell us about speciation in the Cape flora? Divers Distrib 2006, 12:21-26.
  • [45]Ibanez T, Munzinger J, Dagostini G, Hequet V, Rigault F, Jaffré T, Birnbaum P: Structural and floristic diversity of mixed tropical rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Appl Veg Scidoi:10.1111/avsc.1270
  • [46]Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y: Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Report 1999, 17:249-254.
  • [47]Bennett MD, Leitch IJ: Angiosperm DNA C-values database (release 8.0, Dec. 2012). http://www.kew.org/cvalues/ webcite
  • [48]Safer S, Tremetsberger K, Guo Y-P, Kohl G, Samuel MR, Stuessy TF, Stuppner H: Phylogenetic relationships in the genus Leontopodium (Asteraceae: Gnaphalieae) based on AFLP data. Bot J Linn Soc 2011, 165:364-377.
  • [49]Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P: How to track and assess genotyping errors in population genetic studies. Mol Ecol 2004, 13:3261-3273.
  • [50]Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [51]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [52]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [53]Ligges U, Mächler M: Scatterplot3d - an R package for visualizing multivariate data. J Stat Softw 2003, 8:1-20.
  • [54]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:47-50.
  • [55]Pritchard JK, Stephens M, Donnely P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [56]Hubisz MJ, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009, 9:1322-1332.
  • [57]Lifeportal http://www.uio.no/english/services/it/research/hpc/lifeportal/ webcite
  • [58]Earl DA, Von Holdt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012, 4:359-361.
  • [59]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [60]Rosenberg NA: Distruct: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137-138.
  文献评价指标  
  下载次数:23次 浏览次数:8次