期刊论文详细信息
BMC Microbiology
Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma
Susanne Zeilinger2  Markus Omann1  Sabine Gruber2 
[1] current address: Zuckerforschung Tulln GmbH, Josef-Reiter-Strasse 21-23, Tulln, Austria;Research Area Molecular Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
关键词: Biocontrol;    Mycoparasitism;    Signaling;    G protein-coupled receptors;    Trichoderma;    Fungi;   
Others  :  1143719
DOI  :  10.1186/1471-2180-13-108
 received in 2012-11-21, accepted in 2013-05-07,  发布年份 2013
PDF
【 摘 要 】

Background

Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi.

Results

We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei.

Conclusions

Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These GPCRs consequently represent interesting candidates for future research on the mechanisms underlying mycoparasitism and biocontrol.

【 授权许可】

   
2013 Gruber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329214854596.pdf 1277KB PDF download
Figure 5. 115KB Image download
Figure 4. 17KB Image download
Figure 3. 67KB Image download
Figure 2. 60KB Image download
Figure 1. 115KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lafon A, Han KH, Seo JA, Yu JH, d'Enfert C: G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 2006, 43:490-502.
  • [2]Li L, Wright SJ, Krystofova S, Park G, Borkovich KA: Heterotrimeric G Protein Signaling in Filamentous Fungi. Annu Rev Microbiol 2007, 61:423-452.
  • [3]Xue C, Hsueh YP, Heitman J: Magnificent seven: roles of G protein coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008, 32:1010-1032.
  • [4]Kroeze WK, Sheffler DJ, Roth BL: G-protein-coupled receptors at a glance. J Cell Sci 2003, 116:4867.
  • [5]Dohlman H, Thorner J, Caron M, Lefkowitz R: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Bbiochem 1991, 60:653-688.
  • [6]Oldham WM: Structural basis of function in heterotrimeric G proteins. Quaterly Rev Biophys 2006, 39:117-166.
  • [7]Gutkind JS: The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1839, 1998:273.
  • [8]Neer EJ: Heterotrimeric G proteins: Organizers of transmembrane signals. Cell 1995, 80:249-257.
  • [9]Oldham WM, Hamm HE: Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Rev Mol Cell Biol 2008, 9:60-71.
  • [10]Bhattacharya M, Babwah A, Ferguson S: Small GTP-binding protein-coupled receptors. Biochem Soc Trans 2004, 32:1040-1044.
  • [11]Hall RA, Premont RT, Lefkowitz RJ: Heptahelical receptor signaling: beyond the G protein paradigm. J Cell Biol 1999, 145:927.
  • [12]Mitchell R, McCulloch D, Lutz E, Johnson M, MacKenzie C, Fennell M, Fink G, Zhou W, Sealfon SC: Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 1998, 392:411-414.
  • [13]Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ: Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Nat Acad Sci USA 2010, 107:15299-15304.
  • [14]Kulkarni RD, Thon MR, Pan H, Dean RA: Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 2005, 6:R24. BioMed Central Full Text
  • [15]Blumer KJ, Reneke JE, Courchesne WE, Thorner J: Functional domains of a peptide hormone receptor: the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 1998, 53(Pt 2):591-603.
  • [16]Chang YC, Miller GF, Kwon-Chung K: Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect Immun 2003, 71:4953.
  • [17]Hagen DC, McCaffrey G, Sprague GF: Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Nat Acad Sci USA 1986, 83:1418.
  • [18]Hsueh YP, Xue C, Heitman J: A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 2009, 28:1220-1233.
  • [19]Kim H, Borkovich KA: A pheromone receptor gene, pre 1, is essential for mating type specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 2004, 52:1781-1798.
  • [20]Krystofova S, Borkovich KA: The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. Eukaryot Cell 2006, 5:1503.
  • [21]Li L, Borkovich KA: GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell 2006, 5:1287.
  • [22]Miwa T, Takagi Y, Shinozaki M, Yun CW, Schell WA, Perfect JR, Kumagai H, Tamaki H: Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell 2004, 3:919.
  • [23]Seibel C, Tisch D, Kubicek CP, Schmoll M: The pheromone receptors for communication and mating in Hypocrea jecorina. Fungal Genet Biol 2012, 49(10):814-824.
  • [24]Tanaka K, Davey J, Imai Y, Yamamoto M: Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 1993, 13:80.
  • [25]Xue C, Bahn YS, Cox GM, Heitman J: G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 2006, 17:667.
  • [26]Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H: G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 1997, 240:287-292.
  • [27]Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP: Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011, 16:749-759.
  • [28]Omann M, Zeilinger S: How a mycoparasite employs g-protein signaling: using the example ofTrichoderma. Journal of Signal Transduction 2010, 2010:123126.
  • [29]Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S: The G protein alpha subuniz Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 2005, 42(9):749-760.
  • [30]Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A: Trichoderma atroviride G protein alpha subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 2002, 1(4):594-605.
  • [31]Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL: Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 2005, 71:1591.
  • [32]Mukherjee PK, Latha J, Hadar R, Horwitz BA: Role of two G protein alpha subunits, tgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 2004, 70(1):542-549.
  • [33]Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A: Trichoderma in the light of day-physiology and development. Fungal Genet Biol 2010, 47:909-916.
  • [34]Tisch D, Kubicek CP, Schmoll M: The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 2011, 12:613. BioMed Central Full Text
  • [35]Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng X: GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. Eukaryot Cell 2010, 9:242.
  • [36]Zheng H, Zhou L, Dou T, Han X, Cai Y, Zhan X, Tang C, Huang J, Wu Q: Genome-wide prediction of G protein-coupled receptors in Verticillium spp. Fungal Biol 2010, 114:359-368.
  • [37]DeZwaan TM, Carroll AM, Valent B, Sweigard JA: Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell Online 2013, 1999:11.
  • [38]Brunner K, Omann M, Pucher ME, Delic M, Lehner SM, Domnanich P, Kratochwill K, Druzhinina I, Denk D, Zeilinger S: Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet 2008, 54:283-299.
  • [39]Schmoll M: The information highways of a biotechnological workhorse–signal transduction in Hypocrea jecorina. BMC Genomics 2008, 9:430. BioMed Central Full Text
  • [40]Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, Von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011, 12:R40. BioMed Central Full Text
  • [41]Chaverri P, Castlebury LA, Samuels GJ, Geiser DM: Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phyl Evol 2003, 27:302-313.
  • [42]Dodd SL, Lieckfeldt E, Samuels GJ: Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 2003, 95:27-40.
  • [43]Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM: Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 2004, 16:293-299.
  • [44]Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J: The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 2000, 154:609.
  • [45]Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA: Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol 2010, 76:3989.
  • [46]Han KH, Seo JA, Yu JH: A putative G protein coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 2004, 51:1333-1345.
  • [47]Affeldt KJ, Brodhagen M, Keller NP: Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins 2012, 4:695-717.
  • [48]Chung KS, Won M, Lee SB, Jang YJ, Hoe KL, Kim DU, Lee JW, Kim KW, Yoo H: Isolation of a Novel Gene fromSchizosaccharomyces pombe:stm1+ Encoding a Seven-transmembrane Loop Protein That May Couple with the Heterotrimeric G 2 Protein, Gpa2. J Biol Chem 2001, 276:40190.
  • [49]Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP: Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 2009, 10:567. BioMed Central Full Text
  • [50]Omann MR, Lehner S, Escobar Rodríguez C, Brunner K, Zeilinger S: The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 2012, 158:107-118.
  • [51]Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP: A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 2003, 301:1728.
  • [52]Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, Funk WD: PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 2005, 61(3):372-380.
  • [53]Karpichev IV, Cornivelli L, Small GM: Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem 2002, 277:19609.
  • [54]Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ: Metalloregulation of yeast membrane steroid receptor homologs. Proc Nat Acad Sc USA 2004, 101:5506.
  • [55]Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA: Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 2005, 17:171-180.
  • [56]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540.
  • [57]The Trichoderma atroviride genome database http://genome.jgi-psf.org/Triat2/Triat2.home.html webcite
  • [58]The Trichoderma virens genome database http://genome.jgi-psf.org/TriviGv29_8_2/TriviGv29_8_2.home.html webcite
  • [59]The Aspergillus comparative database http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html webcite
  • [60]The Trichoderma reesei genome database http://genome.jgi-psf.org/Trire2/Trire2.home.html webcite
  • [61]Gookin TE, Kim J, Assmann SM: Whole proteome identification of plant candidate G protein-coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo coupling. Genome Biol 2008, 9(7):R120. BioMed Central Full Text
  • [62]Gonzalez-Velazquez W, Gonzalez-Mendez R, Rodriguez-DelValle N: Characterization and ligand identification of a membrane progesterone receptor in fungi: existence of a novel PAQR in Sporothrix schenkii. BMC Microbiol 2012, 12:194. BioMed Central Full Text
  • [63]The Neurospora crassa genome database http://www.broad.mit.edu/annotation/genome/neurospora/Home.html webcite
  • [64]The Magnaporthe grisea genome database http://www.broad.mit.edu/annotation/fungi/magnaporthe webcite
  • [65]The Podospora anserina genome database http://podospora.igmors.u-psud.fr webcite
  • [66]The Chaetomium globosum genome database http://www.broad.mit.edu/annotation/genome/chaetomium_globosum/Home.html webcite
  • [67]The Fusarium graminearum genome database. http://mips.gsf.de/genre/proj/fusarium webcite
  • [68]The Nectria haematococca genome database http://genome.jgi-psf.org/Necha2/Necha2.home.html webcite
  • [69]Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press; 1998.
  • [70]Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu T: ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 2004, 32:W390.
  • [71]Krogh A, Larsson BÈ, Von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [72]Tusnady GE, Simon I: The HMMTOP transmembrane topology prediction server. Bioinformatics 2001, 17:849.
  • [73]Larkin M, Blackshields G, Brown NP, Chenna R, McGettigan PA, MCWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947.
  • [74]Tichopad A, Dilger M, Schwarz G, Pfaffl MW: Standardized determination of real time PCR efficiency from a single reaction set up. Nucleic Acids Res 2003, 31:e122.
  • [75]Pfaffl MW: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001, 29:e45.
  • [76]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30:E36.
  文献评价指标  
  下载次数:6次 浏览次数:18次