期刊论文详细信息
BMC Medical Research Methodology
Ranking treatments in frequentist network meta-analysis works without resampling methods
Guido Schwarzer1  Gerta Rücker1 
[1] Institute for Medical Biometry and Statistics, Medical Center – University of Freiburg, Stefan-Meier-Strasse 26, Freiburg 79104, Germany
关键词: AUC;    p-value;    SUCRA;    Surface under the cumulative ranking;    ‘Probability of being best’-statistic;    Ranking;    Network meta-analysis;   
Others  :  1222424
DOI  :  10.1186/s12874-015-0060-8
 received in 2015-05-06, accepted in 2015-07-23,  发布年份 2015
PDF
【 摘 要 】

Background

Network meta-analysis is used to compare three or more treatments for the same condition. Within a Bayesian framework, for each treatment the probability of being best, or, more general, the probability that it has a certain rank can be derived from the posterior distributions of all treatments. The treatments can then be ranked by the surface under the cumulative ranking curve (SUCRA). For comparing treatments in a network meta-analysis, we propose a frequentist analogue to SUCRA which we call P-score that works without resampling.

Methods

P-scores are based solely on the point estimates and standard errors of the frequentist network meta-analysis estimates under normality assumption and can easily be calculated as means of one-sided p-values. They measure the mean extent of certainty that a treatment is better than the competing treatments.

Results

Using case studies of network meta-analysis in diabetes and depression, we demonstrate that the numerical values of SUCRA and P-Score are nearly identical.

Conclusions

Ranking treatments in frequentist network meta-analysis works without resampling. Like the SUCRA values, P-scores induce a ranking of all treatments that mostly follows that of the point estimates, but takes precision into account. However, neither SUCRA nor P-score offer a major advantage compared to looking at credible or confidence intervals.

【 授权许可】

   
2015 Rücker and Schwarzer.

【 预 览 】
附件列表
Files Size Format View
20150821020954965.pdf 1073KB PDF download
Fig. 6. 18KB Image download
Fig. 5. 18KB Image download
Fig. 4. 21KB Image download
Fig. 3. 21KB Image download
Fig. 2. 17KB Image download
Fig. 1. 15KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synth Methods. 2012; 3(2):80-97.
  • [2]Bafeta A, Trinquart L, Seror R, Ravaud P. Analysis of the systematic reviews process in reports of network meta-analysis: methodological systematic review. BMJ. 2013; 347:3675.
  • [3]Lee AW. Review of mixed treatment comparisons in published systematic reviews shows marked increase since 2009. J Clin Epidemiol. 2014; 67(2):138-43.
  • [4]Network Meta-Analysis: Evidence Synthesis With Mixed Treatment Comparison. Nova Science Publishers Inc., Hauppauge, New York; 2014.
  • [5]Hoaglin DC, Hawkins N, Jansen JP, Scott DA, Itzler R, Cappelleri JC et al.. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2. Value Health. 2011; 14(4):429-37.
  • [6]Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011; 64(2):163-71.
  • [7]Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N et al.. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health. 2011; 14(4):417-28.
  • [8]Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. Br Med J. 2013; 346:2914.
  • [9]Kibret T, Richer D, Beyene J. Bias in identification of the best treatment in a Bayesian network meta-analysis for binary outcome: a simulation study. Clin Epidemiol. 2014; 6:451-60.
  • [10]Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP et al.. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009; 373(9665):746-58.
  • [11]Ioannidis JP. Ranking antidepressants. Lancet. 2009; 373(9677):1759-60.
  • [12]Ades AE, Mavranezouli I, Dias S, Welton NJ, Whittington C, Kendall T. Network meta-analysis with competing risk outcomes. Value Health. 2010; 13(8):976-83.
  • [13]Moreno SG, Sutton AJ, Ades AE, Cooper NJ, Abrams KR. Adjusting for publication biases across similar interventions performed well when compared with gold standard data. J Clin Epidemiol. 2011; 64(11):1230-41.
  • [14]Mills EJ, Bansback N, Ghement I, Thorlund K, Kelly S, Puhan MA et al.. Multiple treatment comparison meta-analyses: a step forward into complexity. Clin Epidemiol. 2011; 3:193-202.
  • [15]Mills EJ, Ioannidis JPA, Thorlund K, Schünemann HJ, Puhan MA, Guyatt GH. How to use an article reporting a multiple treatment comparison meta-analysis. JAMA-J Am Med Assoc. 2012; 308(12):1246-53.
  • [16]Mills EJ, Kanters S, Thorlund K, Chaimani A, Veroniki SA, Ioannidis JP. The effects of excluding treatments from network meta-analyses: survey. Br Med J. 2013; 347:5195.
  • [17]Cipriani A, Barbui C, Salanti G, Rendell J, Brown R, Stockton S, et al.Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis. Lancet. 2011;378(9799):1306–15.
  • [18]Mavridis D, Welton NJ, Sutton A, Salanti G. A selection model for accounting for publication bias in a full network meta-analysis. Stat Med. 2014;33(30):5399–412. doi:10.1002/sim.6321.
  • [19]Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS ONE. 2013; 8(10)(10):76654.
  • [20]Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: A generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making. 2013; 33:607-17.
  • [21]Senn S, Gavini F, Magrez D, Scheen A. Issues in performing a network meta-analysis. Stat Methods Med Res. 2013; 22(2):169-89.
  • [22]Rücker G, Schwarzer G, Krahn U, König J. netmeta: Network Meta-Analysis using Frequentist Methods. R package version 0.8-0. 2015. http://cran. at.r-project.org/web/packages/netmeta/ webcite
  • [23]Linde K, Kriston L, Rücker G, Jamil S, Schumann I, Meissner K et al.. Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. Ann Fam Med. 2015; 13:69-79.
  • [24]R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2014.
  • [25]White IR. Multivariate random-effects meta-regression: Updates to mvmeta. Stat J. 2011; 11(2):255-70.
  • [26]White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012; 3(2):111-25.
  • [27]Fadda V, Maratea D, Trippoli S, Messori A. Network meta-analysis. Results can be summarised in a simple figure. Br Med J. 2011; 342:1555.
  • [28]Storey JD, Tibshirani R. Statistical significance for genomwide studies. Proc Natl Acad Sci. 2003; 100(16):9440-445.
  • [29]Marot G, Foulley JL, Mayer CD, Jaffrézic F. Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics. 2009; 25(20):2692-699.
  • [30]Boulesteix AL, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform. 2009; 10(5):556-68.
  • [31]Jansen JP, Trikalinos T, Cappelleri JC, Daw J, Andes S, Eldessouki R et al.. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: An ISPOR-AMCP-NPC good practice task force report. Value Health. 2014; 17(2):157-73.
  文献评价指标  
  下载次数:32次 浏览次数:14次