期刊论文详细信息
BMC Genomics
An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies
Gwenaël Piganeau2  Yves Van de Peer6  Wendy Schackwitz1  Eric Rivals5  Benoit Piégu3  Hervé Moreau2  Nigel Grimsley2  Adam Eyre-Walker4  Annie Château5  Isabelle Carré7  François-Yves Bouget8  Stephane Rombauts6  Evelyne Derelle2  Bram Verhelst6  Romain Blanc-Mathieu2 
[1] US department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA;Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Avenue du Fontaulé, 66650 Banyuls-sur-Mer, France;UMR 7247, Centre INRA de Nouzilly, Nouzilly, France;School of Life Sciences, University of Sussex, Brighton, UK;LIRMM and Institut de Biologie Computationelle, CNRS and Universite Montpellier, 34095 Montpellier Cedex 5, France;Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium;University of Warwick, Coventry, UK;CNRS, UMR 7621, Observatoire Océanologique, Avenue du Fontaulé, BP44, 66650 Banyuls-sur-Mer, France
关键词: Picoeukaryote;    Correctness of short reads assembly;    Plant glutamate receptor;    Illumina re-sequencing;    Domestication of microalgae;    Ostreococcus tauri;    Genome evolution;   
Others  :  1127309
DOI  :  10.1186/1471-2164-15-1103
 received in 2014-06-18, accepted in 2014-11-19,  发布年份 2014
PDF
【 摘 要 】

Background

Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture.

Results

The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene.

Conclusion

High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.

【 授权许可】

   
2014 Blanc-Mathieu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220091910552.pdf 2039KB PDF download
Figure 3. 75KB Image download
Figure 2. 26KB Image download
Figure 1. 166KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, Sullivan M, Arendt D, Benzoni F, Claverie J-M, Follows M, Gorsky G, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud EG, Sardet C, Sieracki ME, Speich S, Velayoudon D, Weissenbach J, Wincker P, Consortium Tara Oceans: A holistic approach to marine eco-systems biology. PLoS Biol 2011, 9:e1001177.
  • [2]Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, et al.: The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 2014, 12:e1001889.
  • [3]Falkowski PG, Barber RT, Smetacek V: Biogeochemical controls and feedbacks on ocean primary production. Science 1998, 281:200-206.
  • [4]Field CB, Behrenfeld MJ, Randerson JT, Falkowski P: Primary production of the biosphere: integrating terrestrial and oceanic components. Science 1998, 281:237-240.
  • [5]Scala S, Carels N, Falciatore A, Chiusano ML, Bowler C: Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol 2002, 129:993-1002.
  • [6]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, et al.: The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004, 306:79-86.
  • [7]Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci 2006, 103:11647-11652.
  • [8]Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, et al.: The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci 2007, 104:7705-7710.
  • [9]Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, et al.: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 2009, 324:268-272.
  • [10]Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, Bel MV, Poulain J, Katinka M, Hohmann-Marriott MF, Piganeau G, Rouzé P, Da Silva C, Wincker P, Van de Peer Y, Vandepoele K: Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 2012, 13:R74. BioMed Central Full Text
  • [11]Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet MJ, Neveux J, Machado C, Claustre H: Smallest eukaryotic organism. Nature 1994, 370:255-255.
  • [12]Chrétiennot-Dinet M-J, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC: A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 1995, 34:285-292.
  • [13]van Ooijen G, Knox K, Kis K, Bouget FY, Millar AJ: Genomic transformation of the picoeukaryote Ostreococcus tauri. J Vis Exp 2012, 65:e4074.
  • [14]Lozano JC, Schatt P, Botebol H, Vergé V, Lesuisse E, Blain S, Carré IA, Bouget FY: Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J 2014, 78(6):1073-83.
  • [15]Robbens S, Khadaroo B, Camasses A, Derelle E, Ferraz C, Inzé D, de Peer YV, Moreau H: Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 2005, 22:589-597.
  • [16]Moulager M, Corellou F, Vergé V, Escande M-L, Bouget F-Y: Integration of light signals by the retinoblastoma pathway in the control of S phase entry in the picophytoplanktonic cell ostreococcus. PLoS Genet 2010, 6:e1000957. Takahashi JS, editor
  • [17]Gan L, Ladinsky MS, Jensen GJ: Organization of the smallest eukaryotic spindle. Curr Biol 2011, 21(18):1578-83.
  • [18]Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y: Clocks in the Green Lineage: comparative functional analysis of the Circadian architecture of the Picoeukaryote ostreococcus. Plant Cell 2009, 21:3436-3449.
  • [19]O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ: Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
  • [20]Dixon LE, Hodge SK, van Ooijen G, Troein C, Akman OE, Millar AJ: Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytol 2014, 203(2):568-77.
  • [21]Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M: Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 2010, 48:407-416.
  • [22]Sorokina O, Corellou F, Dauvillée D, Sorokin A, Goryanin I, Ball S, Bouget F-Y, Millar AJ: Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus. BMC Syst Biol 2011, 5:36. BioMed Central Full Text
  • [23]Jancek S, Gourbière S, Moreau H, Piganeau G: Clues about the genetic basis of adaptation emerge from comparing the proteomes of two Ostreococcus ecotypes (Chlorophyta, Prasinophyceae). Mol Biol Evol 2008, 25:2293-2300.
  • [24]Michely S, Toulza E, Subirana L, John U, Cognat V, Maréchal-Drouard L, Grimsley N, Moreau H, Piganeau G: Evolution of codon usage in the smallest photosynthetic eukaryotes and their giant viruses. Genome Biol Evol 2013., 5evt053
  • [25]Blanc-Mathieu R, Sanchez-Ferandin S, Eyre-Walker A, Piganeau G: Organellar inheritance in the Green Lineage: insights from Ostreococcus tauri. Genome Biol Evol 2013, 5(8):1503-1.
  • [26]Kim KM, Park JH, Bhattacharya D, Yoon HS: Applications of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol 2014, 64:333-45.
  • [27]Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT, Fonseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S, et al.: Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 2011, 21:2224-2241.
  • [28]Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA: GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res 2012, 22:557-567.
  • [29]Narzisi G, Mishra B: Comparing de novo genome assembly: the long and short of it. PLoS One 2011, 6:e19175.
  • [30]Aguilar C, Escalante A, Flores N, de Anda R, Riveros-McKay F, Gosset G, Morett E, Bolívar F: Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system. BMC Genomics 2012, 13:385. BioMed Central Full Text
  • [31]Liu H, Styles CA, Fink GR: Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 1996, 144:967-978.
  • [32]Bonhivers M, Carbrey JM, Gould SJ, Agre P: Aquaporins in Saccharomyces: genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 1998, 273:27565-27572.
  • [33]Kvitek DJ, Sherlock G: Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 2013, 9:e1003972.
  • [34]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [35]Abby S, Touchon M, De Jode A, Grimsley N, Piganeau G: Bacteria in Ostreococcus tauri cultures – friends, foes or hitchhikers? Front Microbiol 2014, 5:505.
  • [36]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821-829.
  • [37]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19:1117-1123.
  • [38]Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding pre-assembled contigs using SSPACE. Bioinforma Oxf Engl 2011, 27:578-579.
  • [39]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-10.
  • [40]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:R12. BioMed Central Full Text
  • [41]Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 2008, 9:R55. BioMed Central Full Text
  • [42]Tsai IJ, Otto TD, Berriman M: Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol 2010, 11:R41. BioMed Central Full Text
  • [43]Philippe N, Salson M, Commes T, Rivals E: CRAC: an integrated approach to the analysis of RNA-seq reads. Genome Biol 2013, 14:R30. BioMed Central Full Text
  • [44]Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998, 6:175-82.
  • [45]Vandepoele K, Van Bel M, Richard G, Van Landeghem S, Verhelst B, Moreau H, Van de Peer Y, Grimsley N, Piganeau G: pico-PLAZA, a genome database of microbial photosynthetic eukaryotes. Environ Microbiol 2013, 15:2147-2153.
  • [46]Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, Corellou F, Bouget F-Y: Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 2010, 11:192. BioMed Central Full Text
  • [47]Schiex T, Moisan A, Rouzé P: Eugène: An Eukaryotic Gene Finder That Combines Several Sources of Evidence. In Computational Biology. Lecture Notes in Computer Science. Edited by Gascuel O, Sagot M-F. Berlin Heidelberg: Springer; 2001:111-125. Available from: http://link.springer.com/chapter/10.1007/3-540-45727-5_10 webcite
  • [48]Foissac S, Schiex T: Integrating alternative splicing detection into gene prediction. BMC Bioinformatics 2005, 6:25. BioMed Central Full Text
  • [49]Degroeve S, Saeys Y, Baets BD, Rouzé P, de Peer YV: SpliceMachine: predicting splice sites from high-dimensional local context representations. Bioinformatics 2005, 21:1332-1338.
  • [50]Sterck L, Billiau K, Abeel T, Rouzé P, Van de Peer Y: ORCAE: online resource for community annotation of eukaryotes. Nat Methods 2012, 9(11):1041.
  • [51]Zhang H, Meltzer P, Davis S: RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 2013, 14:244. BioMed Central Full Text
  • [52]Salzberg SL, Yorke JA: Beware of mis-assembled genomes. Bioinformatics 2005, 21:4320-4321.
  • [53]Baker M: De novo genome assembly: what every biologist should know. Nat Methods 2012, 9:333-337.
  • [54]Cheung M-S, Down TA, Latorre I, Ahringer J: Systematic bias in high-throughput sequencing data and its correction by BEADS. Nucleic Acids Res 2011, 39:e103-e103.
  • [55]Ekblom R, Smeds L, Ellegren H: Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genomics 2014, 15:467. BioMed Central Full Text
  • [56]Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics 2010, 95:315-327.
  • [57]Benjamini Y, Speed TP: Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 2012, 40:e72.
  • [58]Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G: Glutamate-receptor genes in plants. Nature 1998, 396(6707):125-6.
  • [59]Price MB, Jelesko J, Okumoto S: Glutamate receptor homologs in plants: functions and evolutionary origins. Front Plant Sci [Internet] 2012, 3:235.
  • [60]Pelechano V, Wei W, Steinmetz LM: Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 2013, 497(7447):127-31.
  文献评价指标  
  下载次数:2次 浏览次数:2次