期刊论文详细信息
BMC Systems Biology
Uncovering distinct protein-network topologies in heterogeneous cell populations
Katja Ickstadt1  Eli Zamir2  Hernán E Grecco4  Yessica Fermin1  Rahuman S Malik-Sheriff3  Jakob Wieczorek1 
[1]Faculty of Statistics, TU Dortmund University, Dortmund, Germany
[2]Department of Systemic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
[3]Present address: MRC Clinical Sciences Centre, Imperial College London, London, UK
[4]Present address: Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
关键词: Unmixing;    Reverse engineering;    Protein networks;    Network analysis;    Intercellular variability;    Cluster analysis;    Bayesian analysis;   
Others  :  1233565
DOI  :  10.1186/s12918-015-0170-2
 received in 2014-11-15, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation.

Results

Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins.

Conclusions

Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.

【 授权许可】

   
2015 Wieczorek et al.

【 预 览 】
附件列表
Files Size Format View
20151122021721191.pdf 905KB PDF download
Fig. 5. 98KB Image download
Fig. 4. 56KB Image download
Fig. 3. 58KB Image download
Fig. 2. 53KB Image download
Fig. 1. 71KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010; 11(6):427–39.. 10.1038/nrm2900 webcite
  • [2]Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011; 7:548.. 10.1038/msb.2011.81 webcite
  • [3]Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 2012; Chapter 8:8–17120.. 10.1002/0471142735.im0817s96 webcite
  • [4]Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012; 33(7):323–2.. 10.1016/j.it.2012.02.010 webcite
  • [5]Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012; 30(9):858–67.. 10.1038/nbt.2317 webcite
  • [6]Friedenberger M, Bode M, Krusche A, Schubert W. Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures. Nat Protoc. 2007; 2(9):2285–94.. 10.1038/nprot.2007.320 webcite
  • [7]Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol. 2006; 24(10):1270–8.. 10.1038/nbt1250 webcite
  • [8]Sachs K, Itani S, Carlisle J, Nolan GP, Pe’er D, Lauffenburger DA. Learning signaling network structures with sparsely distributed data. J Comput Biol. 2009; 16(2):201–12.. 10.1089/cmb.2008.07TT webcite
  • [9]Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002; 297(5584):1183–6.. 10.1126/science.1070919 webcite
  • [10]Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgöwer F. Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics. 2011; 12:125.. 10.1186/1471-2105-12-125 webcite
  • [11]Zechner C, Ruess J, Krenn P, Pelet S, Peter M, Lygeros J, et al. Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci U S A. 2012; 109(21):8340–5.. 10.1073/pnas.1200161109 webcite
  • [12]Zechner C, Unger M, Pelet S, Peter M, Koeppl H. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods. 2014; 11(2):197–202.. 10.1038/nmeth.2794 webcite
  • [13]Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 2004; 118(2):217–8.. 10.1016/j.cell.2004.06.028 webcite
  • [14]Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?Nat Rev Cancer. 2012; 12(5):323–4.. 10.1038/nrc3261 webcite
  • [15]Hasenauer J, Hasenauer C, Hucho T, Theis FJ. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics. PLoS Comput Biol. 2014; 10(7):1003686.. 10.1371/journal.pcbi.1003686 webcite
  • [16]Krutzik PO, Crane JM, Clutter MR, Nolan GP. High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol. 2008; 4(2):132–42.. 10.1038/nchembio.2007.59 webcite
  • [17]Zamir E, Geiger B, Cohen N, Kam Z, Katz BZ. Resolving and classifying haematopoietic bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data. Br J Haematol. 2005; 129(3):420–31.. 10.1111/j.1365-2141.2005.05471.x webcite
  • [18]Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. Inference in Bayesian networks. Nat Biotechnol. 2006; 24(1):51–3.. 10.1038/nbt0106-51 webcite
  • [19]Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7(3-4):601-20.
  • [20]Geiger D, Heckerman D: Learning Gaussian networks. In Uncertainty in Artificial Intelligence Proceedings of the Tenth Conference. Edited by de Mántaras RL, Poole D. Morgan Kaufmann, San Francisco, CA; 1994.
  • [21]Ickstadt K, Bornkamp B, Grzegorczyk M, Wieczorek J, Sheriff MR, Grecco HE, et al.: Nonparametric Bayesian Networks (with discussion). In Bayesian Statistics 9. Edited by Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M. Oxford University Press, Oxford, UK; 2011.
  • [22]Pe’er D. Bayesian network analysis of signaling networks: a primer. Sci STKE. 2005; 2005(281):4.. 10.1126/stke.2812005pl4 webcite
  • [23]Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005; 308(5721):523–9.. 10.1126/science.1105809 webcite
  • [24]Sasagawa S, Ozaki Y. -i, Fujita K, Kuroda S. Prediction and validation of the distinct dynamics of transient and sustained Erk activation. Nat Cell Biol. 2005; 7(4):365–73.. 10.1038/ncb1233 webcite
  • [25]Ferguson TS: A Bayesian analysis of some nonparametric problems. Ann Stat 1973, 1:209-30.
  • [26]Nobile A, Fearnside A: Bayesian finite mixtures with an unknown number of components. Stat Comput 2007, 17:147-62.
  • [27]Grzegorczyk M, Husmeier D, Edwards KD, Ghazal P, Millar AJ. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics. 2008; 24(18):2071–078.. 10.1093/bioinformatics/btn367 webcite
  • [28]Pearl J: A model of self-activated memory for evidential reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society. University of California, Irvine, CA; 1985.
  • [29]Madigan D, York J: Bayesian graphical models for discrete data. Int Stat Rev 1995, 63:215-32.
  • [30]Friedman N, Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn. 2003; 50:95–125.. 10.1023/A:1020249912095 webcite
  • [31]Neal RM: Markov chain sampling methods for Dirichlet process mixture models. J Comput Graphical Stat 2000, 9:249-65.
  • [32]Fritsch A, Ickstadt K. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal. 2009; 4:367–92.. 10.1214/09-BA414 webcite
  • [33]R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [34]MacQueen JB: Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Oakland, California; 1967.
  • [35]Ward JH: Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963, 58:236-44.
  • [36]Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20:53–65.. 10.1016/0377-0427(87)90125-7 webcite
  • [37]Vaudry D, Stork PJS, Lazarovici P, Eiden LE. Signaling pathways for PC-12 cell differentiation: making the right connections. Science. 2002; 296(5573):1648–9.. 10.1126/science.1071552 webcite
  • [38]Santos SDM, Verveer PJ, Bastiaens PIH. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol. 2007; 9(3):324–0.. 10.1038/ncb1543 webcite
  • [39]Grzegorczyk M: An introduction to Gaussian Bayesian networks. Methods Mol Biol 2010, 662:121-47.
  • [40]Verma T, Pearl J: Equivalence and synthesis of causal models. In Uncertainty in Artificial Intelligence 6. Edited by Bonissone P, Henrion M, Kanal LN, Lemmer JF. Elsevier Science Publishers, Cambridge, MA; 1991.
  文献评价指标  
  下载次数:22次 浏览次数:27次