BMC Neuroscience | |
Topography-specific spindle frequency changes in Obstructive Sleep Apnea | |
Günther J L Gerhardt3  Ney Lemke4  Emerson L de Santa-Helena2  Diego Z Carvalho1  Suzana V Schönwald1  | |
[1] Sleep Laboratory, Division of Pulmonary Medicine, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2050, Porto Alegre, RS, 90035-003, Brazil;Department of Physics, Universidade Federal de Sergipe, Säo Cristóvao, Brazil;Department of Physics and Chemistry, Universidade de Caxias do Sul, Caxias do Sul, 95001-970, Brazil;Department of Physics and Biophysics, Institute of Biosciences, Univ Estadual Paulista (UNESP), Botucatu, Brazil | |
关键词: OSA; Sleep spindles; EEG; Matching pursuit; Time series; | |
Others : 1170609 DOI : 10.1186/1471-2202-13-89 |
|
received in 2012-01-05, accepted in 2012-06-28, 发布年份 2012 | |
【 摘 要 】
Background
Sleep spindles, as detected on scalp electroencephalography (EEG), are considered to be markers of thalamo-cortical network integrity. Since obstructive sleep apnea (OSA) is a known cause of brain dysfunction, the aim of this study was to investigate sleep spindle frequency distribution in OSA. Seven non-OSA subjects and 21 patients with OSA (11 mild and 10 moderate) were studied. A matching pursuit procedure was used for automatic detection of fast (≥13Hz) and slow (<13Hz) spindles obtained from 30min samples of NREM sleep stage 2 taken from initial, middle and final night thirds (sections I, II and III) of frontal, central and parietal scalp regions.
Results
Compared to non-OSA subjects, Moderate OSA patients had higher central and parietal slow spindle percentage (SSP) in all night sections studied, and higher frontal SSP in sections II and III. As the night progressed, there was a reduction in central and parietal SSP, while frontal SSP remained high. Frontal slow spindle percentage in night section III predicted OSA with good accuracy, with OSA likelihood increased by 12.1%for every SSP unit increase (OR 1.121, 95% CI 1.013 - 1.239, p=0.027).
Conclusions
These results are consistent with diffuse, predominantly frontal thalamo-cortical dysfunction during sleep in OSA, as more posterior brain regions appear to maintain some physiological spindle frequency modulation across the night. Displaying changes in an opposite direction to what is expected from the aging process itself, spindle frequency appears to be informative in OSA even with small sample sizes, and to represent a sensitive electrophysiological marker of brain dysfunction in OSA.
【 授权许可】
2012 Schönwald et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150417022725234.pdf | 718KB | download | |
Figure 3. | 37KB | Image | download |
Figure 2. | 52KB | Image | download |
Figure 1. | 38KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]American Academy of Sleep Medicine: International Classification of Sleep Disorders, 2nd ed: Diagnostic and coding manual. Westchester, IL: Yale University Press; 2005.
- [2]Ohayon M, Carskadon M, Guilleminault C, Vitiello M: Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep 2004, 27:1255-1273.
- [3]Danker-Hopfe H, Schäfer M, Dorn H, Anderer P, Saletu B, Gruber G, Zeitlhofer J, Kunz D, Barbanoj MJ, Himanen S, Kemp B, Penzel T, Röschke J, Dorffner G: Percentile Reference Charts for Selected Sleep Parameters for 20- to 80-Year Old Healthy Subjects from the SIESTA Database. Somnologie 2005, 9:3-14.
- [4]Born J, Rasch B, Gais S: Sleep to Remember. The Neuroscientist 2006, 12:410-424.
- [5]Fogel S, Smith C: The function of the sleep spindle: A physiological index of intellingence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehavioral Rev 2011, 35:1154-1165.
- [6]Nicolas A, Petit D, Rompré S, Montplaisir J: Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiology 2001, 112:521-527.
- [7]Crowley K, Trinder J, Kim Y, Carrington M, Colrain I: The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiology 2002, 113:1615-1622.
- [8]Himanen S, Virkkala J, Huupponen E, Hasan J: Spindle frequency remains slow in sleep apnea patients throughout the night. Sleep Med 2003, 4:361-366.
- [9]Aeschbach D, Dijk D, Borbély A: Dynamics of EEG spindle frequency activity during extended sleep in humans: relationship to slow-wave activity and time of day. Brain Res 1997, 748:131-136.
- [10]Wei H, Riel E, Czeisler C, Dijk D: Attenuated amplitude of circadian and sleep-dependent modulation of electroencephalographic sleep spindle characteristics in elderly human subjects. Neurosci Lett 1999, 260:29-32.
- [11]Himanen S, Virkkala J, Huhtala H, Hasan J: Spindle frequencies in sleep EEG show U-shape within first four NREM sleep episodes. J Sleep Res 2002, 11:35-42.
- [12]Ondze B, Espa F, Dauvilliers Y, Billiard M, Besset A: Sleep architecture, slow wave activity and sleep spindles in mild sleep disordered breathing. Clin Neurophysiology 2003, 114:867-874.
- [13]Jobert M, Poiseau E, Jähnig P, Schulz H, Kubicki S: Topographic Analysis of Sleep Spindle Activity. Neuropsychobiology 1992, 26:210-217.
- [14]Broughton R, Hasan J: Quantitative Topographic Electroencephalographic Mapping During Drowsiness and Sleep Onset. J Clin Neurophysiology 1995, 12:372-386.
- [15]Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B: Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 1997, 6:149-155.
- [16]Huupponen E, Kulkas A, Tenhunen M, Saastamoinen A, Hasan J, Himanen S: Diffuse sleep spindles show similar frequency in central and frontopolar positions. J Neurosci Methods 2008, 172:54-59.
- [17]Werth E, Achermann P, Dijk D, Borbély A: Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. Clin Neurophysiology 1997, 103:535-542.
- [18]Barakat M, Doyon J, Debas K, Vandewalle G, Morin A, Poirier G, Martin N, Lafortune M, Karni A, Ungerleider L, Benali H, Carrier J: Fast and slow spindle involvement in the consolidation of a new motor sequence. Behavioural Brain Res 2011, 217:117-21.
- [19]Johns M: A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991, 14:540-545.
- [20]Bertolazi A, Fagondes S, Hoff L, Pedro V, Menna-Barreto S, Johns M: Portuguese-language version of the Epworth sleepiness scale: validation for use in Brazil. J Bras Pneumol 2009, 35:877-883.
- [21]Iber C, Ancoli-Israel S, Chesson A, Quan S: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 1st ed, for the American Academy of Sleep Medicine. Westchester, Illinois: American Academy of Sleep Medicine; 1970.
- [22]Dingli K, Assimakopoulos T, Fietze I, Witt C, Wraith P, Douglas N: Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnoea patients. Eur Respir J 2002, 20:1246-1253.
- [23]Durka P, Ircha D, Blinowska K: Stochastic time-frequency dictionaries for Matching Pursuit. IEEE Trans Signal Process 2001, 49:507-510.
- [24]Mallat S, Zhang Z: Matching Pursuits With Time-Frequency Dictionaries. IEEE Trans Signal Process 1993, 41:3397-3415.
- [25]Mallat S: A Wavelet Tour of Signal Processing, 2nd ed. San Diego: Academic Press; 1999.
- [26]Durka P, Szelenberger W, Blinowska K, Androsiuk A, Myszka W: Adaptative time-frequency parametrization in pharmaco EEG. J Neurosci Methods 2002, 117:65-71.
- [27]Durka P: From wavelets to adaptive approximations: time-frequency parametrization of EEG. BioMed Eng OnLine 2003, 2:1-8. BioMed Central Full Text
- [28]Schönwald S, Santa-Helena E, Rossatto R, Chaves M, Gerhardt G: Benchmarking Matching Pursuit to find sleep spindles. J of Neurosc Methods 2006, 156:314-321.
- [29]Zygierewicz J, Blinowska K, Durka P, Szelenberger W, Niemcewicz S, Androsiuk W: High resolution study of sleep spindles. Clin Neurophysiolology 1999, 110:2136-2147.
- [30]Huupponen E, Värri A, Himanen S, Hasan J, Lehtokangas M, Saarinen J: Optimization of sigma amplitude threshold in sleep spindle detection. J Sleep Res 2000, 9:327-334.
- [31]Bódisz R, Körmendi J, Rigó P, Lázár A: The individual adjustment method of sleep spindle analysis: Methodological improvements and roots in the fingerprint paradigm. J Neurosci Methods 2009, 178:205-213.
- [32]Ray L, Fogel S, Smith C, Peters K: Validating an automated sleep spindle detection algorithm using an individualized approach. J Sleep Res 2010, 19:374-378.
- [33]da Silva F, Senger H: Improving scalability of Bag-of-Tasks applications running on master-slave platforms. Parallel Comput 2009, 35:57-71.
- [34]Thain D, Tannenbaum T, Livny M: Distributed Computing in Practice: the Condor Experience. Concurrency Comput: Pract Experience 2005, 17:323-356.
- [35]Iope R, Lemke N, von Winckler G: GridUNESP: a multi-campus Grid infrastructure for scientific computing. In Proceedings of the 3rd Latin American Conference on High Performance Computing (CLCAR 2010); Gramado: 25-28 August. UNESP; 2010:76-84.
- [36]Schönwald S, Gerhardt G, de Santa-Helena E, Chaves M: Characteristics of human EEG sleep spindles assessed by Gabor transform. Physica A 2003, 327:180-184.
- [37]Hartigan J, Hartigan P: The Dip Test of Unimodality. Ann Stat 1985, 13:70-84.
- [38]Hintze J, Ray D: Violin Plots: A Box Plot-Density Trace Synergism. Am Statistician 1998, 52:181-184.
- [39]Peter-Derex L, Comte J, Mauguiere F, Salin P: Density and Frequency Caudo-Rostral Gradients of Sleep Spindles Recorded in the Human Cortex. Sleep 2012, 35:69-79.
- [40]Décary A, Rouleau I, Montplaisir J: Cognitive deficits associated with sleep apnea syndrome: a proposed neuropsychological test battery. Sleep 2000, 23:369-381.
- [41]Naegelé B, Thouvard V, Pépin J, Bonnet C, Perret J, Pellat J, Feuerstein C: Deficits of executive functions in patients with sleep apnea syndrome. Sleep 1995, 18:43-52.
- [42]Naegelé B, Pépin J, Lévy P, Bonnet C, Pellat J, Feuerstein C: Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome (OSAS) after CPAP treatment. Sleep 1998, 21:392-397.
- [43]Thomas R, Rosen B, Stern C, Weiss J, Kwong K: Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 2005, 98:2226-2234.
- [44]Alchanatis M, Deligiorgis N, Zias N, Amfilochiou A, Gotsis E, Karakatsani A, Papadimitriou A: Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur Respir J 2004, 24:980-986.
- [45]Morrell M, McRobbie D, Quest R, Cummin A, Ghiassi R, Corfield D: Changes in brain morphology associated with obstructive sleep apnea. Sleep Med 2003, 4:451-454.
- [46]Macey P, Henderson L, Macey K, Alger J, Frysinger R, Woo M, Harper R, Yan-Go F, Harper R: Brain Morphology Associated with Obstructive Sleep Apnea. Am J Respir Crit Care Med 2002, 166:1382-1387.
- [47]O’Donoghue F, Briellmann R, Rochford P, Abbott D, Pell G, Chan C, Tarquinio N, Jackson G, Pierce R: Cerebral Structural Changes in Severe Obstructive Sleep Apnea. Am J Respir Crit Care Med 2005, 171:1185-1190.
- [48]Joo E, Tae W, Lee M, Kang J, Park H, Lee J, Suh M, Hong S: Reduced Brain Gray Matter Concentration in Patients With Obstructive Sleep Apnea Syndrome. Sleep 2010, 33:235-241.
- [49]Desseilles M, Dang-Vu T, Schabus M, Sterpenich V, Maquet P, Schwartz S: Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 2008, 31:777-794.
- [50]Gais S, Mölle M, Helms K, Born J: Learning-dependent increases in sleep spindle density. J Neurosci 2002, 22:6830-6834.
- [51]Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, Klimesch W, Saletu B, Zeitlhofer J: Sleep spindles and their significance for declarative memory consolidation. Sleep 2004, 27:1479-1485.
- [52]Clemens Z, Fabó D, Halász P: Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 2005, 132:529-535.
- [53]Fogel S, Smith C: Learning-dependent changes in sleep spindles and stage 2 sleep. J Sleep Res 2006, 15:250-255.
- [54]Mölle M, Bergmann T, Marshall L, Born J: Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 2001, 34:1411-1421.
- [55]Blinowska K, Durka P: Unbiased high resolution method of EEG analysis in time-frequency space. Acta Neurobiol Exp 2001, 61:157-174.
- [56]Morisson F, Lavigne G, Petit D, Nielsen T, Malo J, Montplaisir J: Spectral analysis of wakefulness and REM sleep EEG in patients with sleep apnoea syndrome. Eur Respir J 1998, 11:1135-1140.
- [57]Xiromeritis A, Hatziefthimiou A, Hadjigeorgiou G, Gourgoulianis K, Anagnostopoulou D, Angelopoulos N: Quantitative spectral analysis of vigilance EEG in patients with obstructive sleep apnoea syndrome. Sleep Breath 2011, 15(1):121-128.
- [58]Rusterholz T, Achermann P: Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 2011, 12:84. BioMed Central Full Text
- [59]Roizenblatt S, Moldofsky H, Benedito-Silva A, Tufik S: Alpha Sleep Characteristics in Fibromyalgia. Arthritis & Rheumatism 2001, 44:222-230.
- [60]Rains J, Penzien D: Sleep and chronic pain; Challenges to the alpha-EEG sleep pattern as a pain specific abnormality. J Psychosomatic Res 2003, 54:77-83.
- [61]Simon M, Schmidt E, Kincses W, Fritzsche M, Bruns A, Aufmuth C, Bogdan M, Rosenstiel W, Schrauf M: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions. Clin Neurophysiology 2011, 122(6):1168-1178.
- [62]Steriade M, McCarley R: Brain Control of Wakefulness and Sleep, 2nd eds. New York: Springer; 2005.
- [63]Timofeev I, Steriade M: Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiology 1996, 76:4152-4168.
- [64]Sitnikova E, Hramov A, Koronovsky A, van Luijtelaar G: Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J Neurosci Methods 2009, 180:304-316.
- [65]Nir Y, Staba R, Andrillon T, Vyazovskiy V, Cirelli C, Fried I, Tononi G: Regional slow waves and spindles in human sleep. Neuron 2011, 70:153-169.
- [66]Ktonas P, Golemati S, Xanthopoulos P, Sakkalis V, Ortigueira M, Tsekou H, Zervakis M, Paparrigopoulos T, Bonakis A, Economou N, Theodoropoulos P, Papageorgiou S, Vassilopoulos D, Soldatos C: Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: Possibility for dementia biomarkers? J Neurosci Methods 2009, 185:133-142.
- [67]Schönwald S, Carvalho D, Dellagustin G, de Santa-Helena E, Gerhardt G: Quantifying chirp in sleep spindles. Journal of Neuroscience Methods 2011, 197:158-164.
- [68]Dehghani N, Cash S, Halgren E: Topographical frequency dynamics within EEG and MEG sleep spindles. Clinical Neurophysiology 2011, 122:229-235.
- [69]Gumenyuk V, Roth T, Moran J, Jefferson C, Bowyer S, Tepler M, Drake C: Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study. J Sleep Res 2009, 18:245-253.
- [70]Urakami Y: Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording. J Clin Neurophysiology 2008, 25:13-24.
- [71]Black J, Guilleminault C, Colrain I, Carrillo O: Upper Airway Resistance Syndrome; Central Electroencephalographic Power and Changes in Breathing Effort. Am J Respir Crit Care Med 2000, 162:406-411.
- [72]Jankel W, Niedermeyer E: Sleep spindles. J Clin Neurophysiology 1985, 2:1-35.
- [73]Watts A, Gritton H, Sweigart J, Poe G: Antidepressant suppression of REM and spindle sleep impairs hippocampus-dependent learning and memory but fosters striatal-dependent strategies. Nature Precedings 2011. http://hdl.handle.net/10101/npre.2011.6524.1 webcite
- [74]Rasch B, Pommer J, Diekelmann S, Born J: Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nature Neurosci 2009, 12:396-397.