期刊论文详细信息
BMC Evolutionary Biology
Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea
Céline Brochier-Armanet1  Purificación López-García2  David Moreira2  Céline Petitjean2 
[1] CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France;UMR CNRS 8079, Unité d'Ecologie, Systématique et Evolution Université Paris-Sud, 91405 Orsay, Cedex, France
关键词: Mesophily;    Horizontal gene transfer;    Thaumarchaeota;    Archaea;    Phylogeny;    Archaeplastida;    Hyperthermophily;    DnaK/Hsp70;    DnaJ/Hsp40;   
Others  :  1158333
DOI  :  10.1186/1471-2148-12-226
 received in 2012-03-19, accepted in 2012-10-25,  发布年份 2012
PDF
【 摘 要 】

Background

In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses.

Results

Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea.

Conclusions

We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

【 授权许可】

   
2012 Petitjean et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150408013919659.pdf 782KB PDF download
Figure 5. 144KB Image download
Figure 4. 198KB Image download
Figure 3. 53KB Image download
Figure 2. 105KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mayer MP, Bukau B: Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005, 62(6):670-684.
  • [2]Young JC: Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 2010, 88(2):291-300.
  • [3]Morano KA: New tricks for an old dog: the evolving world of Hsp70. Ann N Y Acad Sci 2007, 1113:1-14.
  • [4]Kampinga HH, Craig EA: The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010, 11(8):579-592.
  • [5]Harrison C: GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 2003, 8(3):218-224.
  • [6]Laloraya S, Gambill BD, Craig EA: A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci USA 1994, 91(14):6481-6485.
  • [7]Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA: The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 2001, 13(12):2823-2839.
  • [8]Alberti S, Esser C, Hohfeld J: BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 2003, 8(3):225-231.
  • [9]Craig EA, Huang P, Aron R, Andrew A: The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 2006, 156:1-21.
  • [10]Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M: Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 1991, 88(7):2874-2878.
  • [11]Walsh P, Bursac D, Law YC, Cyr D, Lithgow T: The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 2004, 5(6):567-571.
  • [12]Qiu XB, Shao YM, Miao S, Wang L: The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 2006, 63(22):2560-2570.
  • [13]Boorstein WR, Ziegelhoffer T, Craig EA: Molecular evolution of the HSP70 multigene family. J Mol Evol 1994, 38(1):1-17.
  • [14]Renner T, Waters ER: Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones 2007, 12(2):172-185.
  • [15]Nordhues A, Miller SM, Muhlhaus T, Schroda M: New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol 2010, 285:75-113.
  • [16]Macario AJ, Brocchieri L, Shenoy AR, Conway de Macario E: Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J Mol Evol 2006, 63(1):74-86.
  • [17]Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P: Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 1999, 181(2):434-443.
  • [18]Lopez-Garcia P, Brochier C, Moreira D, Rodriguez-Valera F: Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 2004, 6(1):19-34.
  • [19]DeLong EF: Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992, 89(12):5685-5689.
  • [20]Fuhrman JA, McCallum K, Davis AA: Novel major archaebacterial group from marine plankton. Nature 1992, 356(6365):148-149.
  • [21]Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P: Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008, 6(3):245-252.
  • [22]Brochier-Armanet C, Gribaldo S, Forterre P: Spotlight on the Thaumarchaeota. ISME J 2012, 6(2):227-230.
  • [23]Pester M, Schleper C, Wagner M: The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 2011, 14(3):300-306.
  • [24]Dorn KV, Willmund F, Schwarz C, Henselmann C, Pohl T, Hess B, Veyel D, Usadel B, Friedrich T, Nickelsen J, et al.: Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe-S clusters and interact with stromal HSP70B. Biochem J 2010, 427(2):205-215.
  • [25]Brochier-Armanet C, Forterre P, Gribaldo S: Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 2011, 14(3):274-281.
  • [26]Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, et al.: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 2005, 52(5):399-451.
  • [27]Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF: Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 2006, 103(48):18296-18301.
  • [28]Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollabgir A, et al.: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 2010, 107(19):8818-8823.
  • [29]Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR: Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis. PLoS One 2011, 6(2):e16626.
  • [30]Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, Kim JF: Genome sequence of an ammonia-oxidizing soil archaeon, "Candidatus Nitrosoarchaeum koreensis" MY1. J Bacteriol 2011, 193(19):5539-5540.
  • [31]Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, et al.: The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental microbiology 2012.
  • [32]Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, et al.: Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2011, 39(8):3204-3223.
  • [33]Keeling PJ: The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010, 365(1541):729-748.
  • [34]Deschamps P, Moreira D: Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol Biol Evol 2009, 26(12):2745-2753.
  • [35]Criscuolo A, Gribaldo S: Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol 2011, 28(11):3019-3032.
  • [36]Geissinger O, Herlemann DP, Morschel E, Maier UG, Brune A: The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 2009, 75(9):2831-2840.
  • [37]Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 2010, 18(8):331-340.
  • [38]Gupta RS: What are archaebacteria: life's third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 1998, 229(3):695-708.
  • [39]Griffiths E, Gupta RS: The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology 2001, 147(Pt 9):2611-2622.
  • [40]Gupta RS: Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 2011, 100(2):171-182.
  • [41]Philippe H, Budin K, Moreira D: Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol Microbiol 1999, 31(3):1007-1009.
  • [42]Gribaldo S, Brochier-Armanet C: The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 2006, 361(1470):1007-1022.
  • [43]Groussin M, Gouy M: Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol Biol Evol 2011, 28(9):2661-2674.
  • [44]Puigbo P, Pasamontes A, Garcia-Vallve S: Gaining and losing the thermophilic adaptation in prokaryotes. Trends in genetics: TIG 2008, 24(1):10-14.
  • [45]Huang J, Gogarten JP: Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in genetics: TIG 2006, 22(7):361-366.
  • [46]Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H: The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 2004, 101(43):15386-15391.
  • [47]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [48]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [49]Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 2005, 15(2):330-340.
  • [50]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [51]Philippe H: MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 1993, 21(22):5264-5272.
  • [52]Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 2004, 4:18. BioMed Central Full Text
  • [53]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [54]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25(17):2286-2288.
  • [55]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [56]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51(3):492-508.
  文献评价指标  
  下载次数:39次 浏览次数:15次