期刊论文详细信息
BMC Molecular Biology
Regulation of GAD65 expression by SMAR1 and p53 upon Streptozotocin treatment
Samit Chattopadhyay2  Pradeep Parab2  Sreenath Kadreppa2  Taronish Dubash2  Pavithra Lakshminarsimhan Chavali2  Varsheish Raina2  Sandeep Singh1 
[1] Sandeep Singh, Assistant Professor, Centre for Human Genetics, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India;Samit Chattopadhyay, PhD, Scientist-G, National Centre for Cell Sciences, Pune, 411007, India
关键词: Streptozotocin;    p53;    GAD65;    Diabetes;    SMAR1;   
Others  :  1091577
DOI  :  10.1186/1471-2199-13-28
 received in 2011-11-15, accepted in 2012-09-07,  发布年份 2012
PDF
【 摘 要 】

Background

GAD65 (Glutamic acid decarboxylase 65 KDa isoform) is one of the most important auto-antigens involved in Type 1 diabetes induction. Although it serves as one of the first injury markers of β-islets, the mechanisms governing GAD65 expression remain poorly understood. Since the regulation of GAD65 is crucial for the proper functioning of insulin secreting cells, we investigated the stress induced regulation of GAD65 transcription.

Results

The present study shows that SMAR1 regulates GAD65 expression at the transcription level. Using a novel protein-DNA pull-down assay, we show that SMAR1 binding is very specific to GAD65 promoter but not to the other isoform, GAD67. We show that Streptozotocin (STZ) mediated DNA damage leads to upregulation of SMAR1 and p53 expression, resulting in elevated levels of GAD65, in both cell lines as well as mouse β-islets. SMAR1 and p53 act synergistically to up-regulate GAD65 expression upon STZ treatment.

Conclusion

We propose a novel mechanism of GAD65 regulation by synergistic activities of SMAR1 and p53.

【 授权许可】

   
2012 Singh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128172933151.pdf 2741KB PDF download
Figure 5. 69KB Image download
Figure 4. 68KB Image download
Figure 3. 48KB Image download
Figure 2. 48KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Notkins AL: Immunologic and Genetic Factors in Type 1 Diabetes. J Biol Chem 2002, 277:43545-43548.
  • [2]Wu H, Jin Y, Buddhala C, Osterhaus G, Cohen E, Jin H, Wei J, Davis K, Obata K, Wu JY: Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles-Evidence from GAD65-knockout mice studies. Brain Res 2007, 18:1154.
  • [3]Walls AB, Nilsen LH, Eyjolfsson EM, Vestergaard HT, Hansen SL: Schousboe, Sonnewald U, Waagepetersen HS: GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J Neurochem 2010, 115(6):1398-1408.
  • [4]Geng L, Solimena M, Flavell RA, Sherwin RS, Hayday AC: Widespread expression of an autoantigen-GAD65 transgene does not tolerize non-obese diabetic mice and can exacerbate disease. Proc Natl Acad Sci U S A 1998, 95(17):10055-10060.
  • [5]Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ: Two genes encode distinct glutamate decarboxylases. Neuron 1991, 7:91-100.
  • [6]Kim J, Richter W, Aanstoot HJ, Shi Y, Fu Q, Rajotte R, Warnock G, Baekkeskov S: Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes 1993, 42(12):1799-1808.
  • [7]Velloso LA, Kämpe O, Eizirik DL, Hallberg A, Andersson A, Karlsson FA: Human autoantibodies react with glutamic acid decarboxylase antigen in human and rat but not in mouse pancreatic islets. Diabetologia 1993, 36(1):39-46.
  • [8]Velloso LA, Eizirik DL, Karlsson FA, Kämpe O: Absence of autoantibodies against glutamate decarboxylase (GAD) in the non-obese diabetic (NOD) mouse and low expression of the enzyme in mouse islets. Clin Exp Immunol 1994, 96(1):129-137.
  • [9]Bridgett M, Cetkovic-Cvrlje M, O'Rourke R, Shi Y, Narayanswami S, Lambert J, Ramiya V, Baekkeskov S, Leiter EH: Differential protection in two transgenic lines of NOD/Lt mice hyperexpressing the autoantigen GAD65 in pancreatic beta-cells. Diabetes 1998, 47(12):1848-1856.
  • [10]Kim KS, Kang Y, Choi SE, Kim JH, Kim HM, Sun B, Jun HS, Yoon JW: Modulation of glucocorticoid-induced GAD expression in pancreatic beta-cells by transcriptional activation of the GAD67 promoter and its possible effect on the development of diabetes. Diabetes 2002, 51(9):2764-2772.
  • [11]Velloso LA, Kämpe O, Hallberg A, Christmanson L, Betsholtz C, Karlsson FA: Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J Clin Invest 1993, 91(5):2084-2090.
  • [12]Garrett B, Cullinan WE, James P: Region-Specific Regulation of Glutamic Acid Decarboxylase (GAD) mRNA Expression in Central Stress Circuits. The Journal of Neuroscience 1998, 18(15):5938-5947.
  • [13]Petersen JS, Rimvall K, Jørgensen PN, Hasselager E, Moody A, Hejnaes K, Clausen JT, Dyrberg T: Regulation of GAD expression in rat pancreatic islets and brain by gamma-vinyl-GABA andglucose. Diabetologia 1998, 41(5):530-535.
  • [14]Chesselet MF, Mercugliano M, Soghomonian JJ, Salin P, Qin Y, Gonzales C: Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. Prog Brain Res 1993, 99:143-154.
  • [15]Velloso LA, Björk E, Ballagi AE, Funa K, Andersson A, Kämpe O, Karlsson FA: Eizirik DL Regulation of GAD expression in islets of Langerhans occurs both at the mRNA and protein level. Mol Cell Endocrinol 1994, 102(1–2):31-37.
  • [16]Ujihara N, Daw K, Gianani R, Boel E, Yu L, Powers AC: Identification of glutamic acid decarboxylase autoantibody heterogeneity and epitope regions in type I diabetes. Diabetes 1994, 43(8):968-975.
  • [17]Rodriguez-Trelles FA: The neurotransmitter inhibitor GABA, the basis of the mechanism of action of several drugs affecting the central nervous system. An R Acad Nac Med (Madr) 1984, 101(4):431-452.
  • [18]Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH, Hirasawa K, Sherwin RS, Jun HS: Control of Autoimmune Diabetes in NOD Mice by GAD Expression or Suppression in β Cells. Science 1999, 284:1184-1187.
  • [19]Wiley PF, In: Agrarwal MK: Isolation and chemistry of streptozotocin. Amesterdam, The Netherlands: Elsevier North Holland Biomedical Press; 1981:3-18.
  • [20]Bolzan AD, Bianchi MS: Genotoxicity of streptozotocin. Mutat Res 2002, 512(2–3):121-134.
  • [21]Wilson GL, Leiter EH: Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol 1990, 156:27-54.
  • [22]Schnedl WJ, Ferber S, Johnson JH, Newgard CB: STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 2001, 43(11):1326-1333.
  • [23]Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T: Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets: H2O2 as mediator for DNA fragmentation. Diabetes 1991, 40(9):1141-1145.
  • [24]Lakin ND, Jackson SP: Regulation of p53 in response to DNA damage. Oncogene 1999, 18(53):7644-7655.
  • [25]Reich NC, Oren M, Levine AJ: Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 1983, 3(12):2143-2150.
  • [26]Hall PA: p53: The Challenge of Linking Basic Science and Patient Management. Oncologist 1998, 3(4):218-224.
  • [27]Karawajew L, Rhein P, Czerwony G, Ludwig WD: Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood 2005, 105(12):4767-4775.
  • [28]Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004, 4(10):793-805.
  • [29]Fingerman IM, Briggs SD: p53-mediated transcriptional activation: from test tube to cell. Cell 2004, 117(6):690-691.
  • [30]Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT: Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 2004, 279(51):53015-53022.
  • [31]Klein C, Vassilev LT: Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 2004, 91(8):1415-1419.
  • [32]Saito A, Hayashi T, Okuno S, Nishi T, Chan PH: Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin-proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab 2005, 25(2):267-280.
  • [33]Stommel JM, Wahl GM: A New Twist in the Feedback Loop: Stress-Activated MDM2 Destabilization is required for p53 Activation. Cell Cycle 2005, 4(3):411-417.
  • [34]Choi SE, Noh HL, Kim HM, Yoon JW, Kang Y: Streptozotocin upregulates GAD67 expression in MIN6N8a mouse beta cells. J Autoimmun 2002, 19(1–2):1-8.
  • [35]Di Cesare E, Previti M, Lombardo F, Di Benedetto A, Mazzu N, Romano G, De Luca F, Lasco A, Cucinotta D: Serum anti-p53 autoantibodies in patients with type 1 diabetes. Ann Clin Lab Sci 2001, 31(3):253-258.
  • [36]Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S: Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol 2005, 25(19):8415-8429.
  • [37]Pavithra L, Singh S, Sreenath K, Chattopadhyay S: Tumor suppressor SMAR1 downregulates Cytokeratin 8 expression by displacing p53 from its cognate site. Int J Biochem Cell Biol 2009, 41(4):862-871.
  • [38]Chattopadhyay S, Kaul R, Charest A, Housman D, Chen J: SMAR1, a novel, alternatively spliced gene product, binds the Scaffold/Matrix-associated region at the T cell receptor beta locus. Genomics 2000, 68(1):93-96.
  • [39]Kaul-Ghanekar R, Jalota A, Pavithra L, Tucker P, Chattopadhyay S: SMAR1 and Cux/CDP modulate chromatin and act as negative regulators of the TCR beta enhancer (Ebeta). Nucleic Acids Res 2004, 32(16):4862-4875.
  • [40]Kaul R, Mukherjee S, Ahmed F, Bhat MK, Chhipa R, Galande S, Chattopadhyay S: Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int J Cancer 2003, 103(5):606-615.
  • [41]Jalota A, Singh K, Pavithra L, Kaul R, Jameel S, Chattopadhyay S: Tumor suppressor SMAR1 activates and stabilizes p53 through its arginine-serine (RS) rich motif. J Biol Chem 2005, 280(16):16019-16029.
  • [42]Jalota-Badhwar A, Kaul-Ghanekar R, Mogare D, Boppana R, Paknikar KM, Chattopadhyay S: SMAR1-derived P44 peptide retains its tumor suppressor function through modulation of p53. J Biol Chem 2007, 282(13):9902-9913.
  • [43]Pavithra L, Mukherjee S, Sreenath K, Kar S, Sakaguchi K, Roy S, Chattopadhyay S: SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription. J Mol Biol 2009, 388(4):691-702.
  • [44]Singh K, Mogare D, Giridharagopalan RO, Gogiraju R, Pande G, Chattopadhyay S: p53 target gene SMAR1 is dysregulated in breast cancer: its role in cancer cell migration and invasion. PLoS One 2007, 2(7):e660.
  • [45]Myers MA, Georgiou HM, Byron S, Esposti MD: Inhibition of Mitochondrial Oxidative Phosphorylation Induces Hyper-Expression of Glutamic Acid Decarboxylase in Pancreatic Islet Cells. Autoimmunity 1999, 30(1):43-51.
  • [46]Sinha S, Malonia SK, Mittal SPK, Singh K, Kadreppa S, Kamat R, Mukhopadhyaya R, Pal JK, Chattopadhyay S: Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element. EMBO Journal 2010, 29(4):830-842.
  • [47]Hinke SA: Finding GAD: Early Detection of ß-Cell Injury. Endocrinology 2007, 148(10):4568-4571.
  • [48]Antony S, Kumar TP, Kuruvilla KP, George N, Paulose CS: Decreased GABA receptor binding in the cerebral cortex of insulin induced hypoglycemic and streptozotocin induced diabetic rats. Neurochem Res 2010, 35(10):1516-1521.
  • [49]Singh S, Sreenath K, Pavithra L, Roy S, Chattopadhyay S: SMAR1 regulates free radical stress through modulation of AKR1a4 enzyme activity. Int J Biochem Cell Biol 2010, 42(7):1105-1114.
  • [50]Nagore LN, Mitra S, Jiang D, Jiang S, Zhou YW, Loranc M, Jarrett HW: Cyanogen bromide-activated coupling: DNA catalytic chromatography purification of EcoRI endonucleases. Nature Protocols 2007, 1:2909-2915.
  文献评价指标  
  下载次数:22次 浏览次数:3次