期刊论文详细信息
BMC Microbiology
Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells)
Julieta Luna-Herrera1  Angel Caamal-Ley1  Ethel García-Latorre1  Hilda Villegas-Castrejón2  Alma Delia Hernández-Pérez2  Ana Rosa Muñóz-Duarte1  Jorge Ismael Castañeda-Sánchez1  Juan José De la Cruz-López1  Blanca Estela García-Pérez1 
[1]Immunology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Z.P. 11340, México, D.F, México
[2]Electron Microscopy Laboratory, Instituto Nacional de Rehabilitación, Av. México-Xochimilco No. 289, Col. El Arenal de Guadalupe, Tlalpan, México, D.F, México
关键词: Cytoskeleton;    Salmonella typhimurium;    Mycobacterium tuberculosis;    Mycobacterium smegmatis;    Raji cells;    B lymphocytes;    Macropinocytosis;   
Others  :  1221696
DOI  :  10.1186/1471-2180-12-246
 received in 2012-01-27, accepted in 2012-10-12,  发布年份 2012
PDF
【 摘 要 】

Background

The classical roles of B cells include the production of antibodies and cytokines and the generation of immunological memory, these being key factors in the adaptive immune response. However, their role in innate immunity is currently being recognised. Traditionally, B cells have been considered non-phagocytic cells; therefore, the uptake of bacteria by B cells is not extensively documented. In this study, we analysed some of the features of non-specific bacterial uptake by B lymphocytes from the Raji cell line. In our model, B cells were infected with Mycobacterium tuberculosis (MTB), Mycobacterium smegmatis (MSM), and Salmonella typhimurium (ST).

Results

Our observations revealed that the Raji B cells were readily infected by the three bacteria that were studied. All of the infections induced changes in the cellular membrane during bacterial internalisation. M. smegmatis and S. typhimurium were able to induce important membrane changes that were characterised by abundant filopodia and lamellipodia formation. These membrane changes were driven by actin cytoskeletal rearrangements. The intracellular growth of these bacteria was also controlled by B cells. M. tuberculosis infection also induced actin rearrangement-driven membrane changes; however, the B cells were not able to control this infection. The phorbol 12-myristate 13-acetate (PMA) treatment of B cells induced filopodia and lamellipodia formation, the production of spacious vacuoles (macropinosomes), and the fluid-phase uptake that is characteristic of macropinocytosis. S. typhimurium infection induced the highest fluid-phase uptake, although both mycobacteria also induced fluid uptake. A macropinocytosis inhibitor such as amiloride was used and abolished the bacterial uptake and the fluid-phase uptake that is triggered during the bacterial infection.

Conclusions

Raji B cells can internalise S. typhimurium and mycobacteria through an active process, such as macropinocytosis, although the resolution of the infection depends on factors that are inherent in the virulence of each pathogen.

【 授权许可】

   
2012 García-Pérez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803060919473.pdf 3692KB PDF download
Figure 8. 72KB Image download
Figure 7. 62KB Image download
Figure 6. 80KB Image download
Figure 5. 115KB Image download
Fig. 1. 91KB Image download
Figure 3. 37KB Image download
Figure 2. 78KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Fig. 1.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Lund FE, Garvy BA, Randall TD, Harris DP: Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun 2005, 8:25-54.
  • [2]Batista FD, Iber D, Neuberger MS: B cells acquire antigen from target cells after synapse formation. Nature 2001, 411:489-494.
  • [3]Gupta N, DeFranco AL: Lipid rafts and B cell signaling. Semin Cell Dev Biol 2007, 18:616-626.
  • [4]Putnam MA, Moquin AE, Merrihew M, Outcalt C, Sorge E, Caballero A, Gondré-Lewis TA, Drake JR: Lipid raft-independent B cell receptor-mediated antigen internalization and intracellular trafficking. J Immunol 2003, 170:905-912.
  • [5]Chiron D, Bekeredjian-Ding I, Pellat-Deceunynck C, Bataille R, Jego G: Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood 2008, 112:2205-2213.
  • [6]Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K, Munster D, MacDonald KP, Hart DN: Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol 2006, 18:857-869.
  • [7]Won WJ, Bachmann MF, Kearney JF: CD36 is differentially expressed on B cell subsets during development and in responses to antigen. J Immunol 2008, 180:230-237.
  • [8]Rappocciolo G, Piazza P, Fuller CL, Reinhart TA, Watkins SC, Rowe DT, Jais M, Gupta P, Rinaldo CR: DC-SIGN on lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog 2006, 2:0691-0704.
  • [9]Rappocciolo G, Hensler HR, Jais M, Reinhart TA, Pegu A, Jenkins FJ, Rinaldo CR: Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J Virol 2008, 82:4793-4806.
  • [10]Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, Lapatra S, Tort L, Sunver JO: B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol 2006, 7:1116-1124.
  • [11]Krocova Z, Hârtlova A, Souckova D, Zivna L, Kroca M, Rudolf E, Macela A, Stulik J: Interaction of B cells with intracellular pathogen Francisella tularensis. Microb Pathog 2008, 45:79-85.
  • [12]Vidard L, Kovacsovics-Bankowski M, Kraeft SK, Chen LB, Benacerraf B, Rock KL: Analysis of MHC class II presentation of particulate antigens of lymphocytes B. J Immunol 1996, 156:2809-2818.
  • [13]Barral P, Eckl-Dorna J, Harwood NE, De Santo C, Salio M, Illarionov P, Besra GS, Cerundolo V, Batista FD: B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA 2008, 105:8345-8350.
  • [14]Lombardi G, del Gallo F, Vismara D, Piccolella E, De Martino C, Garzelli C, Puglisi C, Colizzi V: Epstein-Barr virus-transformed B cells process and present Mycobacterium tuberculosis particulate antigens to T-cell clones. Cell Immunol 1987, 107:281-292.
  • [15]Verjans GM, Ringrose JH, van Alphen L, Feltkamp TE, Kusters JG: Entrance and survival of Salmonella typhimurium and Yersinia enterocolitica with human B- and T-cell lines. Infect Immun 1994, 62:2229-2235.
  • [16]Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M, Hiroyama T, Eyre HJ, Sutherland GR, Endo Y, Fujita T, Miyabayashi T, Sakano S, Tsuji T, Nakayama E, Phillips JH, Lanier LL, Nakauchi H: Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000, 1:441-446.
  • [17]Menon A, Shroyer ML, Wampler JL, Chawan CB, Bhunia AK: In vitro study of Listeria monocytogenes infection to murine primary and human transformed B cells. Comp Immunol Microbiol Infect Dis 2003, 26:157-174.
  • [18]Garcia-Perez BE, Mondragon-Flores R, Luna-Herrera J: Internalization of Mycobacterium tuberculosis by macropinocitosis in non-phagocytic cells. Microb Pathog 2003, 35:49-55.
  • [19]Garcia-Perez BE, Hernandez-Gonzalez JC, Garcia-Nieto S, Luna-Herrera J: Internalization of a non-pathogenic micobacteria by macropinocitosis in human alveolar epitelial A549 cells. Microb Pathog 2008, 45:1-6.
  • [20]Rosales-Reyes R, Pérez-López A, Sánchez-Gómez C, Hernández-Mote RR, Castro-Eguiluz D, Ortiz-Navarrete V, Alpuche-Aranda CM: Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival. Microb Pathog 2012, 52:367-74.
  • [21]West MA, Bretscher MS, Watts C: Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 1989, 109:2731-9.
  • [22]Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S: Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 2010, 188:547-63.
  • [23]Brenner SL, Korn ED: The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. J Biol Chem 1980, 255:841-4.
  • [24]Araki N, Johnson MT, Swanson JA: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 1996, 135:1249-60.
  • [25]Swanson JA: Phorbol esters stimulated macropinocytosis and solute flow through macrophages. J Cell Sci 1989, 94:135-142.
  • [26]Ivanov AI: Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Meth Mol Biol 2008, 440:15-33.
  • [27]Lopez JD, Mariano M: B-1 cell: the precursor of a novel mononuclear phagocyte with immuno-regulatory properties. An Acad Bras Cienc 2009, 81:489-496.
  • [28]Russo RT, Mariano M: B-1 cell protective role in murine primary Mycobacterium bovis bacillus Calmette-Guerin infection. Immunobiology 2010, 215:1005-1014.
  • [29]Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, van Ham SM: B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. J Immunol 2009, 182:7473-7481.
  • [30]Vidard L, Kovacsovics-Bankowski M, Kraeft SK, Chen LB, Benacerraf B, Rock KL: Analysis of MHC class II presentation of particulate antigens of lymphocytes B. J Immunol 1996, 156:2809-2818.
  • [31]Malhotra S, Kovats S, Zhang W, Coggeshall KM: B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem 2009, 284:24088-24097.
  • [32]Jang C, Machtaler S, Matsuuchi L: The role of Ig-α/β in B cell antigen receptor internalization. Immunol Lett 2010, 134:75-82.
  • [33]Stoddart A, Jackson AP, Brodsky FM: Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 2005, 16:2339-2348.
  • [34]Sharma S, Orlowski G, Song W: Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol 2009, 182:329-339.
  • [35]García-Pérez BE, Villagómez-Palatto DA, Castañeda-Sánchez JI, Coral-Vázquez RM, Ramírez-Sánchez I, Ordoñez-Razo RM, Luna-Herrera J: Innate response of human endothelial cells infected with mycobacteria. Immunobiology 2011, 216:925-935.
  • [36]McQuade KJ, Rapraeger AC: Syndecan-1 transmembrane and extracellular domains have unique and distinct roles in cell spreading. J Biol Chem 2003, 278:46607-46615.
  • [37]Tse KW, Dang-Lawson M, Lee RL, Vong D, Bulic A, Buckbinder L, Gold MR: B cell receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem 2009, 284:22865-22877.
  • [38]Bermudez LE, Shelton K, Young LS: Comparison of the ability of Mycobacterium avium, M. smegmatis and M. tuberculosis to invade and replicate within HEp-2 epithelial cells. Tuber Lung Dis 1995, 76:240-247.
  • [39]Rastogi N, Labrousse V, de Sousa JP: Mycobacterial growth and ultrastructure in mouse L-929 fibroblasts and bone marrow-derived macrophages: evidence that infected fibroblasts secrete mediators capable of modulating bacterial growth in macrophages. Curr Microbiol 1992, 25:203-213.
  • [40]Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR: Mycobacterium tuberculosis invasion and traversal across an in vitro human blood–brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 2006, 193:1287-1295.
  • [41]Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB: Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci USA 1993, 90:10544-10548.
  • [42]Kerr MC, Wang JT, Castro NA, Hamilton NA, Town L, Brown DL, Meunier FA, Brown NF, Stow JL, Teasdale RD: Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 2010, 29:1331-1347.
  • [43]Geddes K, Cruz F, Heffron F: Analysis of cells targeted by Salmonella type III secretion in vivo. Plos Pathog 2007, 3(12):e196.
  • [44]Castro-Eguiluz D, Pelayo R, Rosales-Garcia V, Rosales-Reyes R, Alpuche-Aranda C, Ortiz-Navarrete V: B cell precursors are targets for Salmonella infection. Microb Pathog 2009, 47:52-56.
  • [45]Mills SD, Finlay BB: Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microb Pathog 1994, 17:409-423.
  • [46]Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI: Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med 1994, 179:601-608.
  • [47]Garcia-del Portillo F, Finlay BB: Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect Immun 1994, 62:4641-4645.
  • [48]Kerr MC, Teasdale RD: Defining macropinocytosis. Traffic 2009, 10:364-371.
  • [49]Araki N, Hamasaki M, Egami Y, Hatae T: Effect of 3-methyladenine on the fusion process of macropinosomes in EGF-stimulated A431 cells. Cell Struct Funct 2006, 31:145-57.
  • [50]Hacker U, Albrecht R, Maniak M: Fluid-phase uptake by macropinocytosis in Dictyostelium. J Cell Sci 1997, 110:105-112.
  • [51]Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy 2005, 1:1-10.
  • [52]Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B: Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 2009, 106:14564-14569.
  • [53]Ghosn EE, Russo M, Almeida SR: Nitric oxide-dependent killing of Cryptococcus neoformans by B-1-derived mononuclear phagocyte. J Leukoc Biol 2006, 80:36-44.
  • [54]Tumurkhuu G, Koide N, Dagvadorj J, Noman AS, Khuda II, Naiki Y, Komatsu T, Yoshida T, Yokochi T: B1 cells produce nitric oxide in response to a series of toll-like receptor ligands. Cell Immunol 2010, 261:122-127.
  • [55]Han SH, Kim YE, Park JA, Park JB, Kim YS, Lee Y, Choi IG, Kwon HJ: Expression of human beta-defensin-2 gene induced by CpG-DNA in human B cells. Biochem Biophys Res Commun 2009, 389:443-8.
  文献评价指标  
  下载次数:212次 浏览次数:40次