期刊论文详细信息
BMC Microbiology
Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae
Bjørn-Erik Kristiansen5  Yngvar Tveten3  Arnfinn Sundsfjord5  Linda Strand3  Martin Steinbakk1  Andrew Jenkins6  Dominique A Caugant4  Inger Lill Anthonisen2  Dagfinn Skaare5 
[1] Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway;Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway;Telemark Hospital, Skien, Norway;Faculty of Medicine, University of Oslo, Oslo, Norway;University of Tromsø, Tromsø, Norway;Department of Environmental and Health Sciences, Telemark University College, Bø, Norway
关键词: Surveillance;    Recombination;    Horizontal gene transfer;    PFGE;    MLST;    BLNAR;    PBP3;    ftsI;    Beta-lactam resistance;    Haemophilus influenzae;   
Others  :  1141037
DOI  :  10.1186/1471-2180-14-131
 received in 2014-01-10, accepted in 2014-05-14,  发布年份 2014
PDF
【 摘 要 】

Background

Beta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Low-level resistant isolates with the N526K substitution (group II low-rPBP3) predominate in most geographical regions, while high-level resistant isolates with the additional S385T substitution (group III high-rPBP3) are common in Japan and South Korea.

Knowledge about the molecular epidemiology of rPBP3 strains is limited. We combined multilocus sequence typing (MLST) and ftsI/PBP3 typing to study the emergence and spread of rPBP3 in nontypeable H. influenzae (NTHi) in Norway.

Results

The prevalence of rPBP3 in a population of 795 eye, ear and respiratory isolates (99% NTHi) from 2007 was 15%. The prevalence of clinical PBP3-mediated resistance to ampicillin was 9%, compared to 2.5% three years earlier. Group II low-rPBP3 predominated (96%), with significant proportions of isolates non-susceptible to cefotaxime (6%) and meropenem (20%). Group III high-rPBP3 was identified for the first time in Northern Europe.

Four MLST sequence types (ST) with characteristic, highly diverging ftsI alleles accounted for 61% of the rPBP3 isolates. The most prevalent substitution pattern (PBP3 type A) was present in 41% of rPBP3 isolates, mainly carried by ST367 and ST14. Several unrelated STs possessed identical copies of the ftsI allele encoding PBP3 type A.

Infection sites, age groups, hospitalization rates and rPBP3 frequencies differed between STs and phylogenetic groups.

Conclusions

This study is the first to link ftsI alleles to STs in H. influenzae. The results indicate that horizontal gene transfer contributes to the emergence of rPBP3 by phylogeny restricted transformation.

Clonally related virulent rPBP3 strains are widely disseminated and high-level resistant isolates emerge in new geographical regions, threatening current empiric antibiotic treatment. The need of continuous monitoring of beta-lactam susceptibility and a global system for molecular surveillance of rPBP3 strains is underlined. Combining MLST and ftsI/PBP3 typing is a powerful tool for this purpose.

【 授权许可】

   
2014 Skaare et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325194246640.pdf 1441KB PDF download
Figure 4. 206KB Image download
Figure 3. 115KB Image download
Figure 2. 112KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jordens JZ, Slack MPE: Haemophilus influenzae: Then and now. Eur J Clin Microbiol Infect Dis 1995, 14:935-948.
  • [2]Sill ML, Tsang RSW: Antibiotic susceptibility of invasive Haemophilus influenzae strains in Canada. Antimicrob Agents Chemother 2008, 52:1551-1552.
  • [3]Shuel M, Hoang L, Law DKS, Tsang R: Invasive Haemophilus influenzae in British Columbia: non-Hib and non-typeable strains causing disease in children and adults. Int J Infect Dis 2011, 15:e167-e173.
  • [4]Resman F, Ristovski M, Forsgren A, Kaijser B, Kronvall G, Medstrand P, Melander E, Odenholt I, Riesbeck K: Increase of beta-lactam-resistant invasive Haemophilus influenzae in Sweden, 1997 to 2010. Antimicrob Agents Chemother 2012, 56:4408-4415.
  • [5]Murphy T: Current and future prospects for a vaccine for nontypeable Haemophilus influenzae. Curr Infect Dis Rep 2009, 11:177-182.
  • [6]Tristram S, Jacobs MR, Appelbaum PC: Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007, 20:368-389.
  • [7]Ubukata K, Shibasaki Y, Yamamoto K, Chiba N, Hasegawa K, Takeuchi Y, Sunakawa K, Inoue M, Konno M: Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001, 45:1693-1699.
  • [8]Hasegawa K, Chiba N, Kobayashi R, Murayama SY, Iwata S, Sunakawa K, Ubukata K: Rapidly increasing prevalence of beta-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother 2004, 48:1509-1514.
  • [9]Garcia-Cobos S, Campos J, Lazaro E, Roman F, Cercenado E, Garcia-Rey C, Perez-Vazquez M, Oteo J, de AF: Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007, 51:2564-2573.
  • [10]Hotomi M, Fujihara K, Billal DS, Suzuki K, Nishimura T, Baba S, Yamanaka N: Genetic characteristics and clonal dissemination of beta-lactamase non-producing ampicillin-resistant (BLNAR) Haemophilus influenzae isolated from the upper respiratory tract in Japan. Antimicrob Agents Chemother 2007, 51:3969-3976.
  • [11]Skaare D, Allum AG, Anthonisen IL, Jenkins A, Lia A, Strand L, Tveten Y, Kristiansen BE: Mutant ftsI genes in the emergence of penicillin-binding protein-mediated beta-lactam resistance in Haemophilus influenzae in Norway. Clin Microbiol Infect 2010, 16:1117-1124.
  • [12]Shuel ML, Tsang RSW: Canadian beta-lactamase negative Haemophilus influenzae isolates showing decreased susceptibility toward ampicillin have significant penicillin binding protein 3 mutations. Diagn Microbiol Infect Dis 2009, 63:379-383.
  • [13]Ubukata K: Problems associated with high prevalence of multidrug-resistant bacteria in patients with community-acquired infections. J Infect Chemother 2003, 9:285-291.
  • [14]Dabernat H, Delmas C: Epidemiology and evolution of antibiotic resistance of Haemophilus influenzae in children 5 years of age or less in France, 2001–2008: a retrospective database analysis. Eur J Clin Microbiol Infect Dis 2012, 31:2745-2753.
  • [15]Ubukata K, Chiba N, Morozumi M, Iwata S, Sunakawa K: Longitudinal surveillance of Haemophilus influenzae isolates from pediatric patients with meningitis throughout Japan, 2000–2011. J Infect Chemother 2013, 19:34-41.
  • [16]Park C, Kim KH, Shin NY, Byun JH, Kwon EY, Lee JW, Kwon HJ, Choi EY, Lee DG, Sohn WY, Kang JH: Genetic diversity of the ftsI gene in beta-lactamase-nonproducing ampicillin-resistant and beta-lactamase-producing amoxicillin-/clavulanic acid-resistant nasopharyngeal Haemophilus influenzae strains isolated from children in South Korea. Microb Drug Resist 2013, 19:224-230.
  • [17]Hagiwara E, Baba T, Shinohara T, Nishihira R, Komatsu S, Ogura T: Antimicrobial resistance genotype trend and its association with host clinical characteristics in respiratory isolates of Haemophilus influenzae. Chemotherapy 2012, 58:352-357.
  • [18]Barbosa AR, Giufre M, Cerquetti M, Bajanca-Lavado MP: Polymorphism in ftsI gene and beta-lactam susceptibility in Portuguese Haemophilus influenzae strains: clonal dissemination of beta-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid. J Antimicrob Chemother 2011, 66:788-796.
  • [19]Kaczmarek FS, Gootz TD, Dib-Hajj F, Shang W, Hallowell S, Cronan M: Genetic and molecular characterization of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004, 48:1630-1639.
  • [20]Witherden EA, Montgomery J, Henderson B, Tristram SG: Prevalence and genotypic characteristics of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae in Australia. J Antimicrob Chemother 2011, 66:1013-1015.
  • [21]Sevillano D, Giménez MJ, Cercenado E, Cafini F, Gené A, Alou L, Marco F, Martinez-Martinez L, Coronel P, Aguilar L: Genotypic versus phenotypic characterization, with respect to beta-lactam susceptibility, of Haemophilus influenzae isolates exhibiting decreased susceptibility to beta-lactam resistance markers. Antimicrob Agents Chemother 2009, 53:267-270.
  • [22]Bae S, Lee J, Lee J, Kim E, Lee S, Yu J, Kang Y: Antimicrobial resistance in Haemophilus influenzae respiratory tract isolates in Korea: results of a nationwide acute respiratory infections surveillance. Antimicrob Agents Chemother 2010, 54:65-71.
  • [23]Bajanca-Lavado MP, Simoes AS, Betencourt CR, Sa-Leao R: Characteristics of Haemophilus influenzae invasive isolates from Portugal following routine childhood vaccination against H. influenzae serotype b (2002–2010). Eur J Clin Microbiol Infect Dis 2014, 33:603-610.
  • [24]Garcia-Cobos S, Arroyo M, Perez-Vazquez M, Aracil B, Lara N, Oteo J, Cercenado E, Campos J: Isolates of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae causing invasive infections in Spain remain susceptible to cefotaxime and imipenem. J Antimicrob Chemother 2014, 69:111-116.
  • [25]Puig C, Calatayud L, Marti S, Tubau F, Garcia-Vidal C, Carratala J, Linares J, Ardanuy C: Molecular epidemiology of nontypeable Haemophilus influenzae causing community-acquired pneumonia in adults. PLoS One 2013, 8:e82515.
  • [26]Takahata S, Ida T, Senju N, Sanbongi Y, Miyata A, Maebashi K, Hoshiko S: Horizontal gene transfer of ftsI, the gene encoding penicillin-binding protein 3, in Haemophilus influenzae. Antimicrob Agents Chemother 2007, 51:1589-1595.
  • [27]Sanbongi Y, Suzuki T, Osaki Y, Senju N, Ida T, Ubukata K: Molecular evolution of beta-lactam-resistant Haemophilus influenzae: 9-year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrob Agents Chemother 2006, 50:2487-2492.
  • [28]Witherden EA, Bajanca-Lavado MP, Tristram SG, Nunes A: Role of inter-species recombination of the ftsI gene in the dissemination of altered penicillin-binding-protein-3-mediated resistance in Haemophilus influenzae and Haemophilus haemolyticus. J Antimicrob Chemother 2014, 69:1501-1509.
  • [29]Harrison OB, Brueggemann AB, Caugant DA, van der Ende A, Frosch M, Gray S, Heuberger S, Krizova P, Olcen P, Slack M, Taha MK, Maiden MCJ: Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology 2011, 157:2181-2195.
  • [30]Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R, Kroll JS, Popovic T, Spratt BG: Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 2003, 41:1623-1636.
  • [31]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004, 186:1518-1530.
  • [32]Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL, Unrath WCT, Diggle MA, Theodore MJ, Pleatman CR, Mothershed EA, Sacchi CT, Mayer LW, Gilsdorf JR, Smith AL: Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 2008, 190:1473-1483.
  • [33]NORM/NORM-VET 2007: Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo, Norway. 2008. http://www.unn.no/getfile.php/UNN%20INTER/Fagfolk/www.antibiotikaresistens.no/NORM%202008/NORM%20NORM-VET%202007.pdf webcite
  • [34]Stralin K, Backman A, Holmberg H, Fredlund H, Olcen P: Design of a multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae to be used on sputum samples. APMIS 2005, 113:99-111.
  • [35]Falla TJ, Crook DW, Brophy LN, Maskell D, Kroll JS, Moxon ER: PCR for capsular typing of Haemophilus influenzae. J Clin Microbiol 1994, 32:2382-2386.
  • [36]Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing, twenty-third informational supplement. CLSI document M100-S23. 2013.
  • [37]The European Committee on Antimicrobial Susceptibility Testing (EUCAST): Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0, 2014. 2014. http://www.eucast.org webcite
  • [38]Dabernat H, Delmas C, Seguy M, Pelissier R, Faucon G, Bennamani S, Pasquier C: Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother 2002, 46:2208-2218.
  • [39]Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B: Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995, 33:2233-2239.
  • [40]NORM/NORM-VET 2011: Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo, Norway. 2012. http://www.unn.no/getfile.php/UNN%20INTER/Fagfolk/www.antibiotikaresistens.no/NORM%202012/NORM%20NORM-VET%202011.pdf webcite
  • [41]Norwegian Institute of Public Health: Årsrapport 2012 for sykdomsprogrammet Invasive sykdommer. Oslo, Norway. 2013. http://www.fhi.no/dokumenter/045999cadf.pdf webcite
  • [42]Sill ML, Law DKS, Zhou J, Skinner S, Wylie J, Tsang RSW: Population genetics and antibiotic susceptibility of invasive Haemophilus influenzae in Manitoba, Canada, from 2000 to 2006. FEMS Immun & Med Microbiol 2007, 51:270-276.
  • [43]Sunakawa K, Farrell DJ: Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children. Ann Clin Microbiol Antimicrob 2007, 6:7. BioMed Central Full Text
  • [44]Cardines R, Giufre M, Mastrantonio P, Gli Atti ML, Cerquetti M: Nontypeable Haemophilus influenzae meningitis in children: phenotypic and genotypic characterization of isolates. Pediatr Infect Dis J 2007, 26:577-582.
  • [45]Otsuka T, Komiyama K, Yoshida K, Ishikawa Y, Zaraket H, Fujii K, Okazaki M: Genotyping of Haemophilus influenzae type b in pre-vaccination era. J Infect Chemother 2012, 18:213-218.
  • [46]Thomas J, Pettigrew M: Multilocus sequence typing and pulsed field gel electrophoresis of otitis media causing pathogens. In Auditory and Vestibular Research. 493rd edition. Edited by Sokolowski B. New York: Humana Press; 2009:179-190.
  • [47]Osaki Y, Sanbongi Y, Ishikawa M, Kataoka H, Suzuki T, Maeda K, Ida T: Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae beta-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob Agents Chemother 2005, 49:2834-2839.
  • [48]Maughan H, Redfield RJ: Extensive variation in natural competence in Haemophilus influenzae. Evolution 2009, 63:1852-1866.
  • [49]Mell JC, Shumilina S, Hall IM, Redfield RJ: Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog 2011, 7:e1002151.
  • [50]Power P, Bentley S, Parkhill J, Moxon E, Hood D: Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants. BMC Microbiol 2012, 12:273. BioMed Central Full Text
  • [51]Okabe T, Yamazaki Y, Shiotani M, Suzuki T, Shiohara M, Kasuga E, Notake S, Yanagisawa H: An amino acid substitution in PBP-3 in Haemophilus influenzae associate with the invasion to bronchial epithelial cells. Microbiol Res 2010, 165:11-20.
  • [52]Murphy TF, Lesse AJ, Kirkham C, Zhong H, Sethi S, Munson RS: A clonal group of nontypeable Haemophilus influenzae with two IgA proteases is adapted to infection in chronic obstructive pulmonary disease. PLoS One 2011, 6:e25923.
  • [53]LaCross NC, Marrs CF, Gilsdorf JR: Population structure in nontypeable Haemophilus influenzae. Infect Genet Evol 2013, 14:125-136.
  文献评价指标  
  下载次数:60次 浏览次数:15次