期刊论文详细信息
BMC Genomics
Identification of genetic loci that modulate cell proliferation in the adult rostral migratory stream using the expanded panel of BXD mice
Daniel Goldowitz1  Anna Poon1 
[1] Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
关键词: Quantitative trait locus mapping;    Recombinant inbred mice;    Cell proliferation;    Rostral migratory stream;    Adult neurogenesis;    Neural progenitor cells;   
Others  :  1217673
DOI  :  10.1186/1471-2164-15-206
 received in 2013-08-10, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

Adult neurogenesis, which is the continual production of new neurons in the mature brain, demonstrates the strikingly plastic nature of the nervous system. Adult neural stem cells and their neural precursors, collectively referred to as neural progenitor cells (NPCs), are present in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ), and rostral migratory stream (RMS). In order to harness the potential of NPCs to treat neurodegenerative diseases and brain injuries, it will be important to understand the molecules that regulate NPCs in the adult brain. The genetic basis underlying NPC proliferation is still not fully understood. From our previous quantitative trait locus (QTL) analysis, we had success in using a relatively small reference population of recombinant inbred strains of mice (AXBXA) to identify a genetic region that is significantly correlated with NPC proliferation in the RMS.

Results

In this study, we expanded our initial QTL mapping of RMS proliferation to a far richer genetic resource, the BXD RI mouse strains. A 3-fold difference in the number of proliferative, bromodeoxyuridine (BrdU)-labeled cells was quantified in the adult RMS of 61 BXD RI strains. RMS cell proliferation is highly dependent on the genetic background of the mice with an estimated heritability of 0.58. Genome-wide mapping revealed a significant QTL on chromosome (Chr) 6 and a suggestive QTL on Chr 11 regulating the number of NPCs in the RMS. Composite interval analysis further revealed secondary QTLs on Chr 14 and Chr 18. The loci regulating RMS cell proliferation did not overlap with the suggestive loci modulating cell proliferation in the SGZ. These mapped loci serve as starting points to identify genes important for this process. A subset of candidate genes in this region is associated with cell proliferation and neurogenesis. Interconnectivity of these candidate genes was demonstrated using pathway and transcriptional covariance analyses.

Conclusions

Differences in RMS cell proliferation across the BXD RI strains identifies genetic loci that serve to provide insights into the interplay of underlying genes that may be important for regulating NPC proliferation in the adult mouse brain.

【 授权许可】

   
2014 Poon and Goldowitz; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708005841693.pdf 3081KB PDF download
Figure 6. 170KB Image download
Figure 5. 68KB Image download
Figure 4. 85KB Image download
Figure 3. 168KB Image download
Figure 2. 63KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lois C, Alvarez-Buylla A: Long-distance neuronal migration in the adult mammalian brain. Science 1994, 264:1145-1148.
  • [2]Curtis MA, Low VF, Faull RLM: Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 2012, 72:990-1005.
  • [3]Zhang RL, LeTourneau Y, Gregg SR, Wang Y, Toh Y, Robin AM, Zhang ZG, Chopp M: Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci 2007, 27:3157-3162.
  • [4]Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C: Altered neurogenesis in Alzheimer’s disease. J Psychosom Res 2006, 61:311-316.
  • [5]Curtis MA, Eriksson PS, Faull RLM: Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol 2007, 34:528-532.
  • [6]Johnson MA, Ables JL, Eisch AJ: Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches. BMB Rep 2009, 42:245-259.
  • [7]Ming G-L, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011, 70:687-702.
  • [8]Khodosevich K, Alfonso J, Monyer H: Dynamic changes in the transcriptional profile of subventricular zone-derived postnatally born neuroblasts. Mech Dev 2013, 130:424-432.
  • [9]Kempermann G: Seven principles in the regulation of adult neurogenesis. Eur J Neurosci 2011, 33:1018-1024.
  • [10]Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S: Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004, 24:8354-8365.
  • [11]Jin J, Kang H-M, Park C: Voluntary exercise enhances survival and migration of neural progenitor cells after intracerebral haemorrhage in mice. Brain Inj 2010, 24:533-540.
  • [12]Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czéh B: Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 2010, 20:1-17.
  • [13]Kempermann G, Chesler EJ, Lu L, Williams RW, Gage FH: Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 2006, 103:780-785.
  • [14]Poon A, Li Z, Wolfe GW, Lu L, Williams RW, Hayes NL, Nowakowski RS, Goldowitz D: Identification of a Chr 11 quantitative trait locus that modulates proliferation in the rostral migratory stream of the adult mouse brain. Eur J Neurosci 2010, 32:523-537.
  • [15]Poon A, Goldowitz D: Effects of age and strain on cell proliferation in the mouse rostral migratory stream. Neurobiol Aging 2013, 34:1712.e15-21.
  • [16]Taylor BA, Bedigian HG, Meier H: Genetic studies of the Fv-1 locus of mice: linkage with Gpd-1 in recombinant inbred lines. J Virol 1977, 23:106-109.
  • [17]Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ: Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm Genome 1999, 10:335-348.
  • [18]Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7.
  • [19]Tropepe V, Craig CG, Morshead CM, van der Kooy D: Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 1997, 17:7850-7859.
  • [20]Pruitt SC, Bailey KJ, Freeland A: Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 2007, 25:3121-3132.
  • [21]Campolongo M, Benedetti L, Podhajcer OL, Pitossi F, Depino AM: Hippocampal SPARC regulates depression-related behavior. Genes Brain Behav 2012, 11:966-976.
  • [22]Nalepa G, Barnholtz-Sloan J, Enzor R, Dey D, He Y, Gehlhausen JR, Lehmann AS, Park S-J, Yang Y, Yang X, Chen S, Guan X, Chen Y, Renbarger J, Yang F-C, Parada LF, Clapp W: The tumor suppressor CDKN3 controls mitosis. J Cell Biol 2013, 201:997-1012.
  • [23]Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW: Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 2000, 19:5092-5104.
  • [24]Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Götz M: Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 2008, 28:434-446.
  • [25]Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R: Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci USA 2012, 109:1317-1322.
  • [26]Wu MV, Hen R: The young and the restless: regulation of adult neurogenesis by Wnt signaling. Cell Stem Cell 2013, 12:139-140.
  • [27]Zhang L, Yang X, Yang S, Zhang J: The Wnt /β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 2010, 33:1-8.
  • [28]Logan TT, Villapol S, Symes AJ: TGF-β Superfamily Gene Expression and Induction of the Runx1 Transcription Factor in Adult Neurogenic Regions after Brain Injury. PLoS One 2013, 8:e59250.
  • [29]Bohlen und Halbach von O: Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 2011, 345:1-19.
  • [30]Segal E, Wang H, Koller D: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 2003, 19:i264-i272.
  • [31]Maslov AY, Barone TA, Plunkett RJ, Pruitt SC: Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 2004, 24:1726-1733.
  • [32]Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, Akiyama T: Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 1998, 3:395-403.
  • [33]Hsieh J: Orchestrating transcriptional control of adult neurogenesis. Genes Dev 2012, 26:1010-1021.
  • [34]Khodosevich K, Seeburg PH, Monyer H: Major signaling pathways in migrating neuroblasts. Front Mol Neurosci 2009, 2:7.
  • [35]Kim J, Song G, Wu G, Bazer FW: Functional roles of fructose. Proc Natl Acad Sci USA 2012, 109:E1619-E1628.
  • [36]Yang C-T, Hindes AE, Hultman KA, Johnson SL: Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish. PLoS Genet 2007, 3:e88.
  • [37]Olivier-Van Stichelen S, Guinez C, Mir A-M, Perez-Cervera Y, Liu C, Michalski J-C, Lefebvre T: The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of β-catenin and cell proliferation. Am J Physiol Endocrinol Metab 2012, 302:E417-E424.
  • [38]Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R, Schughart K, Naumann D, Brockmann GA: ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics 2013, 14:386. BioMed Central Full Text
  文献评价指标  
  下载次数:59次 浏览次数:16次