期刊论文详细信息
BMC Systems Biology
Network-dosage compensation topologies as recurrent network motifs in natural gene networks
Murat Acar1  Ping Liu1  Ruijie Song1 
[1] Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA
关键词: Genetic interactions;    Stochasticity;    Yeast galactose network;    Network motifs;    Network-dosage compensation;   
Others  :  864949
DOI  :  10.1186/1752-0509-8-69
 received in 2014-04-07, accepted in 2014-06-09,  发布年份 2014
PDF
【 摘 要 】

Background

Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations.

Results

Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif.

Conclusions

Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells.

【 授权许可】

   
2014 Song et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726021901451.pdf 1148KB PDF download
67KB Image download
62KB Image download
46KB Image download
44KB Image download
64KB Image download
Figure 4. 31KB Image download
【 图 表 】

Figure 4.

【 参考文献 】
  • [1]Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR: Daughter-specific transcription factors regulate cell size control in budding yeast. PLoS Biol 2009, 7:e1000221.
  • [2]Zopf CJ, Quinn K, Zeidman J, Maheshri N: Cell-cycle dependence of transcription dominates noise in gene expression. PLoS Comput Biol 2013, 9:e1003161.
  • [3]Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR: Ploidy regulation of gene expression. Science 1999, 285:251-254.
  • [4]Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in a single cell. Science 2002, 297:1183-1186.
  • [5]Pedraza JM, van Oudenaarden A: Noise propagation in gene networks. Science 2005, 307:1965-1969.
  • [6]Lee JA, Lupski JR: Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006, 52:103-121.
  • [7]Malone J, Cho D-Y, Mattiuzzo N, Artieri C, Jiang L, Dale R, Smith H, McDaniel J, Munro S, Salit M, Andrews J, Przytycka T, Oliver B: Mediation of drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 2012, 13:R28. BioMed Central Full Text
  • [8]Springer M, Weissman JS, Kirschner MW: A general lack of compensation for gene dosage in yeast. Mol Syst Biol 2010, 6:368.
  • [9]Osley MA, Hereford LM: Yeast histone genes show dosage compensation. Cell 1981, 24:377-384.
  • [10]Acar M, Pando BF, Arnold FH, Elowitz MB, van Oudenaarden A: A general mechanism for network-dosage compensation in gene circuits. Science 2010, 329:1656-1660.
  • [11]Blackwell E, Halatek IM, Kim H-JN, Ellicott AT, Obukhov AA, Stone DE: Effect of the pheromone-responsive Gα and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase. Mol Cell Biol 2003, 23:1135-1150.
  • [12]Mattison CP, Ota IM: Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Gene Dev 2000, 14:1229-1235.
  • [13]Siegmund RF, Nasmyth KA: The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol Cell Biol 1996, 16:2647-2655.
  • [14]Cox KH, Rai R, Distler M, Daugherty JR, Coffman JA, Cooper TG: Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 2000, 275:17611-17618.
  • [15]Bardwell L: A walk-through of the yeast mating pheromone response pathway. Peptides 2005, 26:339-350.
  • [16]Proft M, Struhl K: Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 2002, 9:1307-1317.
  • [17]Hu F, Gan Y, Aparicio OM: Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae. Genetics 2008, 179:863-874.
  • [18]Valenzuela L, Aranda C, González A: TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 2001, 183:2331-2334.
  • [19]Hernández H, Aranda C, Riego L, González A: Gln3–Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Comm 2011, 404:859-864.
  • [20]Timson DJ, Ross HC, Reece RJ: Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry. Biochem J 2002, 363:515-520.
  • [21]Zhan X-L, Guan K-L: A specific protein–protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Gene Dev 1999, 13:2811-2827.
  • [22]Metodiev MV, Matheos D, Rose MD, Stone DE: Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science 2002, 296:1483-1486.
  • [23]Thual C, Bousset L, Komar AA, Walter S, Buchner J, Cullin C, Melki R: Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p†. Biochemistry 2001, 40:1764-1773.
  • [24]Umland TC, Taylor KL, Rhee S, Wickner RB, Davies DR: The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p. Proc Natl Acad Sci 2001, 98:1459-1464.
  • [25]Carvalho J, Zheng XFS: Domains of Gln3p Interacting with karyopherins, Ure2p, and the target of rapamycin protein. J Biol Chem 2003, 278:16878-16886.
  • [26]Holland AJ, Cleveland DW: Losing balance: the origin and impact of aneuploidy in cancer. EMBO reports 2012, 13:501-514.
  • [27]Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C: Systematic mapping of genetic interaction networks. Annu Rev Genet 2009, 43:601-625.
  • [28]Young MW, Kay SA: Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2001, 2:702-715.
  • [29]Buchler NE, Louis M: Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 2008, 384:1106-1119.
  • [30]Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED: Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res 2012, 40:D700-D705.
  • [31]Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenco AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sa-Correia I, Freitas AT: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 2011, 39:D136-D140.
  • [32]Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenço AB, Sá-Correia I, Oliveira AL, Freitas AT: YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 2008, 36:D132-D136.
  • [33]Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 2006, 34:D446-D451.
  • [34]MacIsaac K, Wang T, Gordon DB, Gifford D, Stormo G, Fraenkel E: An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 2006, 7:113. BioMed Central Full Text
  • [35]Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34:D535-D539.
  文献评价指标  
  下载次数:76次 浏览次数:23次