期刊论文详细信息
BMC Medical Genomics
Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics
Simon G Gregory5  Allison E Ashley-Koch2  Herbert Fuchs4  Gerald Grant3  David S Enterline6  Chien-Kuang C Ding1  Heidi Cope2  Karen Soldano2  Eric Lock1  Christina A Markunas1 
[1] Duke Center for Human Genetics, Duke University Medical Center, Durham, NC, USA;Duke Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA;Department of Neurosurgery, Stanford University/Lucile Packard Children’s Hospital, Stanford, CA, USA;Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA;Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA;Division of Neuroradiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
关键词: Clustering;    Cranial base morphometrics;    Whole genome expression;    Disease subtypes;    Posterior fossa;    Chiari Type I Malformation;   
Others  :  796666
DOI  :  10.1186/1755-8794-7-39
 received in 2014-01-22, accepted in 2014-06-18,  发布年份 2014
PDF
【 摘 要 】

Background

Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population.

Methods

A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively.

Results

All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits.

Conclusions

Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis.

【 授权许可】

   
2014 Markunas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706000158829.pdf 1035KB PDF download
Figure 3. 66KB Image download
Figure 2. 68KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Meadows J, Kraut M, Guarnieri M, Haroun RI, Carson BS: Asymptomatic Chiari Type I malformations identified on magnetic resonance imaging. J Neurosurg 2000, 92(6):920-926.
  • [2]Speer MC, Enterline DS, Mehltretter L, Hammock P, Joseph J, Dickerson M, Ellenbogen RG, Milhorat TH, Hauser MA, George TM: Chiari type I malformation with or without syringomyelia: Prevalence and genetics. J Genet Couns 2003, 12:297-311.
  • [3]Milhorat TH, Nishikawa M, Kula RW, Dlugacz YD: Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochir (Wien) 2010, 152(7):1117-1127.
  • [4]Marin-Padilla M, Marin-Padilla TM: Morphogenesis of experimentally induced Arnold–Chiari malformation. J Neurol Sci 1981, 50(1):29-55.
  • [5]Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y: Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 1997, 86(1):40-47.
  • [6]Markunas CA, Soldano K, Dunlap K, Cope H, Asiimwe E, Stajich J, Enterline D, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE: Stratified whole genome linkage analysis of Chiari Type I malformation implicates known Klippel-Feil syndrome genes as putative disease candidates. PLoS One 2013, 8(4):e61521.
  • [7]Boyles AL, Enterline DS, Hammock PH, Siegel DG, Slifer SH, Mehltretter L, Gilbert JR, Hu-Lince D, Stephan D, Batzdorf U, Benzel E, Ellenbogen R, Green BA, Kula R, Menezes A, Mueller D, Oro' JJ, Iskandar BJ, George TM, Milhorat TH, Speer MC: Phenotypic definition of Chiari type I malformation coupled with high-density SNP genome screen shows significant evidence for linkage to regions on chromosomes 9 and 15. Am J Med Genet A 2006, 140(24):2776-2785.
  • [8]Urbizu A, Toma C, Poca MA, Sahuquillo J, Cuenca-Leon E, Cormand B, Macaya A: Chiari malformation type I: a case–control association study of 58 developmental genes. PLoS One 2013, 8(2):e57241.
  • [9]Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FD, Murrell D, Clarke RA: Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat 2008, 29(8):1017-1027.
  • [10]Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauvé Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquié O, Underhill TM, Waskiewicz AJ, Lehmann OJ: Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet 2009, 18(6):1110-1121.
  • [11]Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ: Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 2010, 19(2):287-298.
  • [12]Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC: Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 1999, 44(5):1005-1017.
  • [13]Tubbs RS, Beckman J, Naftel RP, Chern JJ, Wellons JC 3rd, Rozzelle CJ, Blount JP, Oakes WJ: Institutional experience with 500 cases of surgically treated pediatric Chiari malformation Type I. J Neurosurg Pediatr 2011, 7(3):248-256.
  • [14]Markunas CA, Enterline DS, Dunlap K, Soldano K, Cope H, Stajich J, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE: Genetic evaluation and application of posterior cranial fossa traits as endophenotypes for Chiari Type I Malformation. Ann Hum Genet 2013, 8(1):1-12.
  • [15]Nakamura N, Iwasaki Y, Hida K, Abe H, Fujioka Y, Nagashima K: Dural band pathology in syringomyelia with Chiari type I malformation. Neuropathology 2000, 20(1):38-43.
  • [16]Arora P, Behari S, Banerji D, Chhabra DK, Jain VK: Factors influencing the outcome in symptomatic Chiari I malformation. Neurol India 2004, 52(4):470-474.
  • [17]Ling D: SASqPCR: robust and rapid analysis of RT-qPCR data in SAS. PLoS One 2012, 7(1):e29788.
  • [18]Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008, 24(13):1547-1548.
  • [19]Witten DM, Tibshirani R: A framework for feature selection in clustering. J Am Stat Assoc 2010, 105(490):713-726.
  • [20]Witten DM, Tibshirani R: sparcl: Perform sparse hierarchical clustering and sparse k-means clustering. 2011. R package version 2.15.0
  • [21]Vavrek MJ: fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron 2011, 14:1T.
  • [22]Hubert L, Arabie P: Comparing partitions. J Classif 1985, 2(1):26.
  • [23]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [24]Dunning M, Lynch A, Eldridge M: illuminaHumanv4.db: Illumina HumanHT12v4 annotation data (chip illuminaHumanv4). R package version 2.15.0
  • [25]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [26]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [27]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3(6):1101-1108.
  • [28]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.
  • [29]Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B: Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci U S A 2003, 100(4):1775-1780.
  • [30]Alter MD, Kharkar R, Ramsey KE, Craig DW, Melmed RD, Grebe TA, Bay RC, Ober-Reynolds S, Kirwan J, Jones JJ, Turner JB, Hen R, Stephan DA: Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One 2011, 6(2):e16715.
  • [31]Raouf A, Seth A: Ets transcription factors and targets in osteogenesis. Oncogene 2000, 19(55):6455-6463.
  • [32]Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A, Kola I: Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature 1996, 379(6565):534-537.
  • [33]Hill CA, Sussan TE, Reeves RH, Richtsmeier JT: Complex contributions of Ets2 to craniofacial and thymus phenotypes of trisomic “Down syndrome” mice. Am J Med Genet A 2009, 149A(10):2158-2165.
  • [34]Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, Allegra M, Zaragkoulias A, Akha ES, Knight SJ, Lord H, Lester T, Izatt L, Lampe AK, Mohammed SN, Stewart FJ, Verloes A, Wilson LC, Healy C, Sharpe PT, Hammond P, Hughes J, Taylor S, Johnson D, Wall SA, Mavrothalassitis G, Wilkie AO: Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 2013.
  • [35]Long F, Ornitz DM: Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013, 5(1):a008334.
  • [36]Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R: Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol 2004, 276(1):124-142.
  • [37]Hosokawa R, Urata M, Han J, Zehnaly A, Bringas P Jr, Nonaka K, Chai Y: TGF-beta mediated Msx2 expression controls occipital somites-derived caudal region of skull development. Dev Biol 2007, 310(1):140-153.
  • [38]Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y: Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003, 130(21):5269-5280.
  文献评价指标  
  下载次数:5次 浏览次数:8次