期刊论文详细信息
BMC Genomics
The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements
Hikmet Budak2  Jaroslav Doležel1  Federica Cattonaro3  Hélène Bergès5  Sonia Vautrin5  Jan Šafář1  Hana Šimková1  Stuart J. Lucas4  Meral Yuce4  Federica Magni3  Bala Ani Akpinar4 
[1] Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, CZ-78371, Czech Republic;Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey;Instituto di Genomica Applicata, Via J.Linussio 51, Udine 33100, Italy;Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla 34956, Istanbul, Turkey;Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France
关键词: Grass evolution;    Gene space;    Physical mapping;    5DS, Hexaploid wheat;    Triticum aestivum;   
Others  :  1213742
DOI  :  10.1186/s12864-015-1641-y
 received in 2014-10-20, accepted in 2015-05-19,  发布年份 2015
PDF
【 摘 要 】

Background

The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution.

Results

The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins.

Conclusions

Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.

【 授权许可】

   
2015 Akpinar et al.

【 预 览 】
附件列表
Files Size Format View
20150615030338903.pdf 1767KB PDF download
Fig. 9. 51KB Image download
Fig. 8. 28KB Image download
Fig. 7. 101KB Image download
Fig. 6. 66KB Image download
Fig. 5. 35KB Image download
Fig. 4. 117KB Image download
Fig. 3. 63KB Image download
Fig. 2. 28KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]The map-based sequence of the rice genome. Nature. 2005; 436:793-800.
  • [2]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al.. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326:1112-1115.
  • [3]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W et al.. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013; 496:91-95.
  • [4]Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C et al.. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013; 496:87-90.
  • [5]Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014; 345:1250092-2.
  • [6]Mayer KFX, Rogers J, Pozniak C, Eversole K, Feuillet C, Gill B. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014; 345:8-1251788.
  • [7]Van Slageren M: Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). International Center for Agricultural Research in the Dry Areas (1994); 1994:513.
  • [8]Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo M-C. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol. 2006; 23:1386-1396.
  • [9]Smith DB, Flavell RB. Characterisation of the wheat genome by renaturation kinetics. Chromosoma. 1975;50.
  • [10]Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P et al.. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 2010; 22:1686-1701.
  • [11]Vrana J, Kubalakova M, Simkova H, Cihalikova J, Lysak MA, Dolezel J. Flow Sorting of Mitotic Chromosomes in Common Wheat (Triticum aestivum L.). Genetics. Genetics. 2000; 156:2033-2041.
  • [12]Kubaláková M, Vrána J, Cíhalíková J, Simková H, Dolezel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2002; 104:1362-1372.
  • [13]Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P et al.. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008; 322:101-104.
  • [14]Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014; 345:1249721-1.
  • [15]Lucas SJ, Akpınar BA, Kantar M, Weinstein Z, Aydınoğlu F, Safář J et al.. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One. 2013; 8: Article ID e59542
  • [16]Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C et al.. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013; 14:R64. BioMed Central Full Text
  • [17]Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R et al.. A physical map of the short arm of wheat chromosome 1A. PLoS One. 2013; 8: Article ID e80272
  • [18]Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Šimková H et al.. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 2013; 14:R138. BioMed Central Full Text
  • [19]Poursarebani N, Nussbaumer T, Simková H, Safář J, Witsenboer H, van Oeveren J et al.. Whole genome profiling (WGP(TM)) and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. 2014.
  • [20]Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS et al.. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J. 2011; 9:768-775.
  • [21]Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L et al.. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet. 2012; 124:423-432.
  • [22]Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P et al.. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One. 2011; 6: Article ID e26421
  • [23]Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S et al.. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012; 69:377-386.
  • [24]Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H et al.. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res. 2014; 21:103-114.
  • [25]Lucas SJ, Akp Nar BA, Imková H, Kubaláková M, El Dole J, Budak H. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics. 2014; 15:1080. BioMed Central Full Text
  • [26]Akpinar BA, Lucas SJ, Vrána J, Doležel J, Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). 2014.
  • [27]Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P et al.. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 2006; 48:463-474.
  • [28]Lucas SJ, Šimková H, Šafář J, Jurman I, Cattonaro F, Vautrin S et al.. Functional features of a single chromosome arm in wheat (1AL) determined from its structure. Funct Integr Genomics. 2012; 12:173-182.
  • [29]Sehgal SK, Li W, Rabinowicz PD, Chan A, Simková H, Doležel J et al.. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biol. 2012; 12:64. BioMed Central Full Text
  • [30]Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM et al.. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012; 491:705-710.
  • [31]Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H et al.. Whole-genome validation of high-information-content fingerprinting. Plant Physiol. 2005; 139:27-38.
  • [32]Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010; 11:584. BioMed Central Full Text
  • [33]Sears E, Sears L. The telocentric chromosomes of common wheat. 1978.
  • [34]Safár J, Simková H, Kubaláková M, Cíhalíková J, Suchánková P, Bartos J et al.. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010; 129:211-223.
  • [35]Luo M-C, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR et al.. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003; 82:378-389.
  • [36]Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R et al.. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics. 2010; 11:714. BioMed Central Full Text
  • [37]Rustenholz C, Choulet F, Laugier C, Safár J, Simková H, Dolezel J et al.. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol. 2011; 157:1596-1608.
  • [38]Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004; 109:1105-1114.
  • [39]Mayer KFX, Taudien S, Martis M, Simková H, Suchánková P, Gundlach H et al.. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009; 151:496-505.
  • [40]Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U et al.. Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives. Plant Cell. 2011; 23:1706-1718.
  • [41]Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N et al.. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics. 2009; 9:473-484.
  • [42]Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008; 2008:619832.
  • [43]Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R et al.. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS One. 2013; 8: Article ID e53937
  • [44]Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P, Shukla RN et al.. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode. Heterodera avenae PLoS One. 2014; 9: Article ID e96311
  • [45]Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004; 5:123-135.
  • [46]Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 408:796-815.
  • [47]Kubaláková M, Valárik M, Barto J, Vrána J, Cíhalíková J, Molnár-Láng M et al.. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003; 46:893-905.
  • [48]Simková H, Safář J, Kubaláková M, Suchánková P, Cíhalíková J, Robert-Quatre H et al.. BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J Biomed Biotechnol. 2011; 2011:302543.
  • [49]Scalabrin S, Morgante M, Policriti A. Automated FingerPrint Background removal: FPB. BMC Bioinformatics. 2009; 10:127. BioMed Central Full Text
  • [50]You FM, Luo M-C, Gu YQ, Lazo GR, Deal K, Dvorak J et al.. GenoProfiler: batch processing of high-throughput capillary fingerprinting data. Bioinformatics. 2007; 23:240-242.
  • [51]Kofler R, Schlötterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007; 23:1683-1685.
  • [52]Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P et al.. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J. 2010; 8:196-210.
  • [53]Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M, Coghill J et al.. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J. 2013; 11:279-295.
  • [54]Poland JA, Brown PJ, Sorrells ME, Jannink J-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012; 7: Article ID e32253
  • [55]Luo M-C, Gu YQ, You FM, Deal KR, Ma Y, Hu Y et al.. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A. 2013; 110:7940-7945.
  • [56]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al.. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421. BioMed Central Full Text
  文献评价指标  
  下载次数:3次 浏览次数:8次