期刊论文详细信息
BMC Medical Research Methodology
Comparison of different approaches to estimating age standardized net survival
Mark J. Rutherford2  Paul W. Dickman1  Paul C. Lambert1 
[1] Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm PO BOX 281, 24105, Sweden;Department of Health Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
关键词: Epidemiology;    Relative survival;    Net survival;   
Others  :  1222417
DOI  :  10.1186/s12874-015-0057-3
 received in 2015-03-19, accepted in 2015-07-21,  发布年份 2015
PDF
【 摘 要 】

Background

Age-standardized net survival provides an important population-based summary of cancer survival that appropriately accounts for differences in other-cause mortality rates and standardizes the population age distribution to allow fair comparisons. Recently, there has been debate over the most appropriate method for estimating this quantity, with the traditional Ederer II approach being shown to have potential bias.

Methods

We compare lifetable-based estimates (Ederer II), a new unbiased method based on inverse probability of censoring weights (Pohar Perme) and model-based estimates. We make the comparison in a simulation setting; generating scenarios where we would expect to see a large theoretical bias.

Results

Our simulations demonstrate that even in relatively extreme scenarios there is negligible bias in age-standardized net survival when using the age-standardized Ederer II method, modelling with continuous age or using the Pohar Perme method. However, both the Ederer II and modelling approaches have some advantages over the Pohar Perme method in terms of greater precision, particularly for longer-term follow-up (10 and 15 years).

Conclusions

Our results show that, when age-standardizing, concern over bias with the traditional methods is unfounded. We have also shown advantages in using the more traditional and modelling methods.

【 授权许可】

   
2015 Lambert et al.

【 预 览 】
附件列表
Files Size Format View
20150821020817697.pdf 2392KB PDF download
Fig. 6. 97KB Image download
Fig. 5. 99KB Image download
Fig. 4. 92KB Image download
Fig. 3. 101KB Image download
Fig. 2. 103KB Image download
Fig. 1. 18KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Seppä K, Hakulinen T, Läärä E. Avoidable deaths and random variation in patients’ survival. Br J Cancer. 2012; 106(11):1846-9.
  • [2]Ellis L, Coleman MP, Rachet B. How many deaths would be avoidable if socioeconomic inequalities in cancer survival in england were eliminated? a national population-based study, 1996-2006. Eur J Cancer. 2012; 48(2):270-8.
  • [3]Derolf ÅR, Kristinsson SY, Andersson TM-L, Landgren O, Dickman PW, Bjørkholm M. Improved patient survival for acute myeloid leukemia: a population-based study of 9729 patients diagnosed in Sweden between 1973 and 2005. Blood. 2009; 113(16):3666-72.
  • [4]Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R et al.. EUROCARE-4. survival of cancer patients diagnosed in 1995-1999: Results and commentary. Eur J Cancer. 2009; 45(6):931-91.
  • [5]Coleman MP, Quaresma M, Berrino F, Lutz JM, Angelis RD, Capocaccia R et al.. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008; 9(8):730-56.
  • [6]Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C et al.. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet. 2011; 377:127-38.
  • [7]Cronin KA, Feuer EJ. Cumulative cause-specific mortality for cancer patients in the presence of other causes: a crude analogue of relative survival. Stat Med. 2000; 19(13):1729-1740.
  • [8]Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer. 2004; 40(15):2307-316.
  • [9]Møller H, Sandin F, Bray F, Klint A, Linklater KM, Purushotham A et al.. Breast cancer survival in England, Norway and Sweden: a population-based comparison. Int J Cancer. 2010; 127:2630-8.
  • [10]Lambert PC, Holmberg L, Sandin F, Bray F, Linklater KM, Purushotham A et al.. Quantifying differences in breast cancer survival between England and Norway. Cancer Epidemiol. 2011; 35:526-33.
  • [11]Morris EJA, Sandin F, Lambert PC, Bray F, Klint Å, Linklater K et al.. A population-based comparison of the survival of patients with colorectal cancer in England, Norway and Sweden between 1996 and 2004. Gut. 2011; 60(8):1087-1093.
  • [12]Holmberg L, Robinson D, Sandin F, Bray F, Linklater KM, Klint A et al.. A comparison of prostate cancer survival in England, Norway and Sweden: a population-based study. Cancer Epidemiol. 2012; 36(1):7-12.
  • [13]Holmberg L, Sandin F, Bray F, Richards M, Spicer J, Lambe M et al.. National comparisons of lung cancer survival in England, Norway and Sweden 2001-2004: differences occur early in follow-up. Thorax. 2010; 65(5):436-41.
  • [14]Pohar Perme M, Stare J, Estève J. On estimation in relative survival. Biometrics. 2012; 68:113-20.
  • [15]Danieli C, Remontet L, Bossard N, Roche L, Belot A. Estimating net survival: the importance of allowing for informative censoring. Stat Med. 2012; 31(8):775-86.
  • [16]Dickman PW, Sloggett A, Hills M, Hakulinen T. Regression models for relative survival. Stat Med. 2004; 23(1):51-64.
  • [17]Lambert PC, Dickman PW, Nelson CP, Royston P. Estimating the crude probability of death due to cancer and other causes using relative survival models. Stat Med. 2010; 29:885-95.
  • [18]Ederer F, Heise H. Instructions to IBM 650 programmers in processing survival computations. methodological note no. 10, end results evaluation section. Technical report, National Cancer Institute, Bethesda, MD; 1959.
  • [19]Hakulinen T, Seppä K, Lambert PC. Choosing the relative survival method for cancer survival estimation. Eur J Cancer. 2011; 47(14):2202-210.
  • [20]Dickman PW, Lambert PC, Coviello E, Rutherford MJ. Estimating net survival in population-based cancer studies. Int J Cancer. 2013; 133(2):519-21.
  • [21]Seppä Ki, Hakulinen T, Pokhrel A. Choosing the net survival method for cancer survival estimation. Eur J Cancer. 2013. doi:10.1016/j.ejca.2013.09.019.
  • [22]Brenner H, Arndt V, Gefeller O, Hakulinen T. An alternative approach to age adjustment of cancer survival rates. Eur J Cancer. 2004; 40(15):2317-22.
  • [23]Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible parametric models for relative survival, with application in coronary heart disease. Stat Med. 2007; 26(30):5486-8.
  • [24]Rutherford MJ, Crowther MJ, Lambert PC. The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. J Stat Comput Simul. 2015; 85:777-93.
  • [25]Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006; 25(24):4279-92.
  • [26]Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006; 25(1):127-41.
  • [27]Roche L, Danieli C, Belot A, Grosclaude P, Bouvier AM, Velten M et al.. Cancer net survival on registry data: Use of the new unbiased Pohar-Perme estimator and magnitude of the bias with the classical methods. Int J Cancer. 2012; 132(10):2359-69.
  • [28]Hakulinen T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics. 1982; 38(4):933-42.
  • [29]Rebolj Kodre A, Pohar Perme M. Informative censoring in relative survival. Stat Med. 2013; 32:4791-4802.
  • [30]Crowther MJ, Lambert PC. Simulating biologically plausible complex survival data. Stat Med. 2013; 32:4118-34.
  • [31]Rutherford MJ, Dickman PW, Lambert PC. Comparison of methods for calculating relative survival in population-based studies. Cancer Epidemiol. 2012; 36(1):16-21.
  文献评价指标  
  下载次数:58次 浏览次数:28次