期刊论文详细信息
BMC Evolutionary Biology
The mode and tempo of hepatitis C virus evolution within and among hosts
Oliver G Pybus3  Aris Katzourakis3  Marco Salemi4  Philippe Lemey1  Joe Parker2  Rebecca R Gray4 
[1] Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium;Kitson Consulting, Bristol, BS8 3UL, UK;Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, UK;Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
关键词: adaptation;    relaxed clock;    molecular clock;    Bayesian phylogenetics;    virus evolution;    substitution rate;    hepatitis C;   
Others  :  1144290
DOI  :  10.1186/1471-2148-11-131
 received in 2011-02-28, accepted in 2011-05-19,  发布年份 2011
PDF
【 摘 要 】

Background

Hepatitis C virus (HCV) is a rapidly-evolving RNA virus that establishes chronic infections in humans. Despite the virus' public health importance and a wealth of sequence data, basic aspects of HCV molecular evolution remain poorly understood. Here we investigate three sets of whole HCV genomes in order to directly compare the evolution of whole HCV genomes at different biological levels: within- and among-hosts. We use a powerful Bayesian inference framework that incorporates both among-lineage rate heterogeneity and phylogenetic uncertainty into estimates of evolutionary parameters.

Results

Most of the HCV genome evolves at ~0.001 substitutions/site/year, a rate typical of RNA viruses. The antigenically-important E1/E2 genome region evolves particularly quickly, with correspondingly high rates of positive selection, as inferred using two related measures. Crucially, in this region an exceptionally higher rate was observed for within-host evolution compared to among-host evolution. Conversely, higher rates of evolution were seen among-hosts for functionally relevant parts of the NS5A gene. There was also evidence for slightly higher evolutionary rate for HCV subtype 1a compared to subtype 1b.

Conclusions

Using new statistical methods and comparable whole genome datasets we have quantified, for the first time, the variation in HCV evolutionary dynamics at different scales of organisation. This confirms that differences in molecular evolution between biological scales are not restricted to HIV and may represent a common feature of chronic RNA viral infection. We conclude that the elevated rate observed in the E1/E2 region during within-host evolution more likely results from the reversion of host-specific adaptations (resulting in slower long-term among-host evolution) than from the preferential transmission of slowly-evolving lineages.

【 授权许可】

   
2011 Gray et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330104736788.pdf 292KB PDF download
Figure 3. 24KB Image download
Figure 2. 79KB Image download
Figure 1. 126KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Pybus OG, Rambaut A: Evolutionary analysis of the dynamics of viral infectious disease. Nature Reviews Genetics 2009, 10:540-550.
  • [2]Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, Holmes EC: Unifying the epidemiological and evolutionary dynamics of pathogens. Science 2004, 303:327-332.
  • [3]Levrero M: Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 2006, 25:3834-3847.
  • [4]Hepatitis-C FAQs for the Public [http://www.cdc.gov/hepatitis/C/cFAQ.htm#statistics] webcite
  • [5]Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC, Strazzera A, Chien DY, Munoz SJ, Balestrieri A, Purcell RH, Alter HJ: The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 2000, 288:339-344.
  • [6]Ray SC, Wang YM, Laeyendecker O, Ticehurst JR, Villano SA, Thomas DL: Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy. Journal of Virology 1999, 73:2938-2946.
  • [7]Abbate I, Lo Iacono O, Di Stefano R, Cappiello G, Girardi E, Longo R, Ferraro D, Antonucci G, Di Marco V, Solmone M, Craxì A, Ippolito G, Capobianchi MR: HVR-1 quasispecies modifications occur early and are correlated to initial but not sustained response in HCV-infected patients treated with pegylated- or standard-interferon and ribavirin. Journal of Hepatology 2004, 40:831-836.
  • [8]Sheridan I, Pybus OG, Holmes EC, Klenerman P: High-resolution phylogenetic analysis of hepatitis C virus adaptation and its relationship to disease progression. Journal of Virology 2004, 78:3447-3454.
  • [9]Arenas JI, Gallegos-Orozco JF, Laskus T, Wilkinson J, Khatib A, Fasola C, Adair D, Radkowski M, Kibler KV, Nowicki M, Douglas D, Williams J, Netto G, Mulligan D, Klintmalm G, Rakela J, Vargas HE: Hepatitis C virus quasi-species dynamics predict progression of fibrosis after liver transplantation. The Journal of Infectious Diseases 2004, 189:2037-2046.
  • [10]Booth JC, Kumar U, Webster D, Monjardino J, Thomas HC: Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients. Hepatology 1998, 27:223-227.
  • [11]Salemi M, Vandamme A: Hepatitis C virus evolutionary patterns studied through analysis of full-genome sequences. Journal of Molecular Evolution 2002, 54:62-70.
  • [12]Moradpour D, Penin F, Rice C: Replication of hepatitis C virus. Nature Reviews Microbiology 2007, 5:453-463.
  • [13]Bartosch B, Verney G, Dreux M, Donot P, Morice Y, Penin F, Pawlotsky J, Lavillette D, Cosset F: An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. Journal of Virology 2005, 79:8217-8229.
  • [14]Allain J, Dong Y, Vandamme A, Moulton V, Salemi M: Evolutionary rate and genetic drift of hepatitis C virus are not correlated with the host immune response: studies of infected donor-recipient clusters. Journal of Virology 2000, 74:2541-2549.
  • [15]Pybus OG, Charleston M, Gupta S, Rambaut A, Holmes E, Harvey P: The epidemic behavior of the hepatitis C virus. Science 2001, 292:2323-2325.
  • [16]Pybus OG, Barnes E, Taggart R, Lemey P, Markov P, Rasachak B, Syhavong B, Phetsouvanah R, Sheridan I, Humphreys I, Lu L, Newton PN, Klenerman P: Genetic history of hepatitis C virus in East Asia. Journal of Virology 2009, 83:1071-1082.
  • [17]Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG: Measurably evolving populations. Trends in Ecology and Evolution 2003, 18:481-488.
  • [18]Lemey P, Salemi M, Wang B, Duffy M, Hall WH, Saksena NK, Vandamme AM: Site stripping based on likelihood ratio reduction is a useful tool to evaluate the impact of non-clock-like behavior on viral phylogenetic reconstructions. FEMS Immunol Med Microbiol 2003, 39:125-132.
  • [19]Lemey P, Rambaut A, Pybus OG: HIV evolutionary dynamics within and among hosts. AIDS Reviews 2006, 8:125-140.
  • [20]Drummond A, Ho S, Phillips M, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biology 2006, 4:e88.
  • [21]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 2007, 7:214. BioMed Central Full Text
  • [22]Power J, Davidson F, O'Riordan J, Simmonds P, Yap P, Lawlor E: Hepatitis C infection from anti-D immunoglobulin. Lancet 1995, 346:372-373.
  • [23]Itakura J, Nagayama K, Enomoto N, Hamano K, Sakamoto N, Fanning L, Kenny-Walsh E, Shanahan F, Watanabe M: Viral load change and sequential evolution of entire hepatitis C virus genome in Irish recipients of single source-contaminated anti-D immunoglobulin*. Journal of Viral Hepatitis 2005, 12:594-603.
  • [24]McAllister J, Casino C, Davidson F, Power J, Lawlor E, Yap P, Simmonds P, Smith D: Long-term evolution of the hypervariable region of hepatitis C virus in a common-source-infected cohort. Journal of Virology 1998, 72:4893-4905.
  • [25]Kass R, Raftey A: Bayes Factors. Journal of the American Statistical Association 1995, 90:773-795.
  • [26]Suchard M, Weiss R, Sincheimer J: Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology & Evolution 2001, 18:1001-1013.
  • [27]Suchard MA, Weiss RE, Sincheimer JS: Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology & Evolution 2001, 18:1001-1013.
  • [28]Shapiro B, Rambaut A, Drummond AJ: Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Molecular Biology & Evolution 2006, 23:7-9.
  • [29]Cristina J, Lopez F, Moratorio G, López L, Vasquez S, García-Aguirre L, Chunga A: Hepatitis C virus F protein sequence reveals a lack of functional constraints and a variable pattern of amino acid substitution. Journal of General Virology 2005, 86:115-120.
  • [30]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology & Evolution 2007, 24:1586-1591.
  • [31]Smith DB, Simmonds P: Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. Journal of Molecular Evolution 1997, 45:238-246.
  • [32]Tuplin A, Wood J, Evans DJ, Patel AH, Simmonds P: Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus. RNA 2002, 8:824-841.
  • [33]Pybus OG, Shapiro B: Natural selection and adaptation of molecular sequences. In The Phylogenetic Handbook. Edited by Lemey P, Salemi M, Vandamme A. Cambridge: Cambridge University Press; 2009:406-418.
  • [34]Ogata N, Alter H, Miller R, Purcell R: Nucleotide sequence and mutation rate of the H strain of hepatitis C virus. Proc Natl Acad Sci USA 1991, 88:3392-3396.
  • [35]Abe K, Inchauspe G, Fujisawa K: Genomic characterization and mutation rate of hepatitis C virus isolated from a patient who contracted hepatitis during an epidemic of non-A, non-B hepatitis in Japan. Journal of General Virology 1992, 73:2725-2729.
  • [36]Okamoto H, Kojima M, Okada S, Yoshizawa H, Iizuka H, Tanaka T, Muchmore E, Peterson D, Ito Y, Mishiro S: Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: variability and stability. Virology 1992, 190:894-899.
  • [37]Cantaloube J, Biagini P, Attoui H, Gallian P, de Micco P, de Lamballerie X: Evolution of hepatitis C virus in blood donors and their respective recipients. Journal of General Virology 2003, 84:441-446.
  • [38]Ina Y, Mizokami M, Ohba K, Gojobori T: Reduction of synonymous substitutions in the core protein gene of hepatitis C virus. Journal of Molecular Evolution 1994, 38:50-56.
  • [39]Tanaka Y, Hanada K, Mizokami M, Yeo A, Shih J, Gojobori T, Alter H: Inaugural Article: A comparison of the molecular clock of hepatitis C virus in the United States and Japan predicts that hepatocellular carcinoma incidence in the United States will increase over the next two decades. Proc Natl Acad Sci USA 2002, 99:15584-15589.
  • [40]Magiorkinis G, Magiorkinis E, Paraskevis D, Ho S, Shapiro B, Pybus OG, Allain J, Hatzakis A: The global spread of hepatitis C virus 1a and 1b: a phylodynamic and phylogeographic analysis. PLoS Medicine 2009, 6:e1000198.
  • [41]Simmonds P, Balfe P, Peutherer JF, Ludlam CA, Bishop JO, Brown AJ: Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. Journal of Virology 1990, 64:864-872.
  • [42]Jenkins G, Rambaut A, Pybus O, Holmes E: Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. Journal of Molecular Evolution 2002, 54:156-165.
  • [43]Worobey M, Telfer P, Souquière S, Hunter M, Coleman CA, Metzger MJ, Reed P, Makuwa M, Hearn G, Honarvar S, Roques P, Apetrei C, Kazanji M, Marx PA: Island biogeography reveals the deep history of SIV. Science 2010, 329:1487.
  • [44]Ray SC, Fanning L, Wang XH, Netski DM, Kenny-Walsh E, Thomas DL: Divergent and convergent evolution after a common-source outbreak of hepatitis C virus. Journal of Experimental Medicine 2005, 201:1753-1759.
  • [45]Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH, Yang HC, Sidney J, Sette A, Pardoll D, Thomas DL, Ray SC: Cellular immune selection with hepatitis C virus persistence in humans. Journal of Experimental Medicine 2005, 201:1741-1752.
  • [46]Tester I, Smyk-Pearson S, Wang P, Wertheimer A, Yao E, Lewinsohn DM, Tavis JE, Rosen HR: Immune evasion versus recovery after acute hepatitis C virus infection from a shared source. Journal of Experimental Medicine 2005, 201:1725-1731.
  • [47]Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY, Lucas M, Pillay T, Ouchi K, Reyor LL, Schulze zur Wiesch J, Gandhi RT, Chung RT, Bhardwaj N, Klenerman P, Walker BD, Allen TM: CD8 epitope escape and reversion in acute HCV infection. Journal of Experimental Medicine 2004, 200:1593-1604.
  • [48]Herbeck JT, Nickle DC, Learn GH, Gottlieb GS, Curlin ME, Heath L, Mullins JI: Human immunodeficiency virus type 1 env evolves toward ancestral states upon transmission to a new host. Journal of Virology 2006, 80:1637-1644.
  • [49]Salemi M, Lewis M, Egan JF, Hall WW, Desmyter J, Vandamme AM: Different population dynamics of human T cell lymphotropic virus type II in intravenous drug users compared with endemically infected tribes. Proc Natl Acad Sci USA 1999, 96:13253-13258.
  • [50]Pawlotsky JM: Hepatitis C virus (HCV) NS5A protein: role in HCV replication and resistance to interferon-alpha. Journal of Viral Hepatitis 1999, 6(Suppl 1):47-48.
  • [51]Song J, Fujii M, Wang F, Itoh M, Hotta H: The NS5A protein of hepatitis C virus partially inhibits the antiviral activity of interferon. Journal of General Virology 1999, 80:879-886.
  • [52]Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C: Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. Journal of Clinical Investigations 1995, 96:224-230.
  • [53]Torres-Puente M, Cuevas JM, Jiménez-Hernández N, Bracho MA, García-Robles I, Carnicer F, del Olmo J, Ortega E, Moya A, González-Candelas F: Hepatitis C virus and the controversial role of the interferon sensitivity determining region in the response to interferon treatment. Journal of Medical Virology 2008, 80:247-253.
  • [54]Nousbaum J, Polyak SJ, Ray SC, Sullivan DG, Larson AM, Carithers RL, Gretch DR: Prospective characterization of full-length hepatitis C virus NS5A quasispecies during induction and combination antiviral therapy. Journal of Virology 2000, 74:9028-9038.
  • [55]El-Shamy A, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, Hotta H: Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy. Hepatology 2008, 48:38-47.
  • [56]El-Shamy A, Kim SR, Ide YH, Sasase N, Imoto S, Deng L, Shoji I, Hotta H: Polymorphisms of Hepatitis C Virus Non-Structural Protein 5A and Core Protein and Clinical Outcome of Pegylated-Interferon/Ribavirin Combination Therapy. Intervirology 2011, in press.
  • [57]Fridell RA, Qiu D, Wang C, Valera L, Gao M: Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother 2010, 54:3641-3650.
  文献评价指标  
  下载次数:14次 浏览次数:15次