期刊论文详细信息
BMC Genomics
RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens
Benjamin P Oldroyd2  Vanina Vergoz2  Mark J F Brown1  Fabio Manfredini1 
[1]School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
[2]Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, Sydney NSW 2006, Australia
关键词: Brain;    Behaviour;    Gene expression;    Australian honey bees;    RNAseq;    Transcriptomics;    Double narcosis;    Carbon dioxide;    Mating;    Apis mellifera;   
Others  :  1222458
DOI  :  10.1186/s12864-015-1750-7
 received in 2015-02-18, accepted in 2015-07-04,  发布年份 2015
PDF
【 摘 要 】

Background

Mating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO 2 -narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation.

Results

The mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO 2 -treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process.

Conclusions

Our study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.

【 授权许可】

   
2015 Manfredini et al.

【 预 览 】
附件列表
Files Size Format View
20150821052834774.pdf 1624KB PDF download
Fig. 5. 21KB Image download
Fig. 4. 47KB Image download
Fig. 3. 75KB Image download
Fig. 2. 14KB Image download
Fig. 1. 29KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Shuster SM, Wade MJ: Mating systems and strategies: Princeton, New Jersey: Princeton University Press; 2003.
  • [2]Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R, et al. Genes, behavior and next-generation RNA sequencing. Genes Brain Behav. 2013;12(1):1–12.
  • [3]Harris RM, Hofmann HA. Neurogenomics of Behavioral Plasticity. Ecological Genomics. Springer, In; 2014.
  • [4]O'Connell LA, Hofmann HA. Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Front Neuroendocrinol. 2011; 32(3):320-335.
  • [5]Dolezal AG, Toth AL. Honey bee sociogenomics: a genome-scale perspective on bee social behavior and health. Apidologie. 2014; 45(3):375-395.
  • [6]Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science. 2008; 322(5903):896-900.
  • [7]Ram KR, Wolfner MF. A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc Natl Acad Sci. 2009; 106(36):15384-15389.
  • [8]Hammock EA, Young LJ. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science. 2005; 308(5728):1630-1634.
  • [9]Lim MM, Wang Z, Olazábal DE, Ren X, Terwilliger EF, Young LJ. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature. 2004; 429(6993):754-757.
  • [10]Castella G, Christe P, Chapuisat M. Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol. 2009; 22(3):564-570.
  • [11]Page REJ, Peng CY-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol. 2001; 36(4):695-711.
  • [12]Heinze J, Schrempf A. Aging and reproduction in social insects–a mini-review. Gerontology. 2008; 54(3):160-167.
  • [13]Lawniczak MK, Barnes AI, Linklater JR, Boone JM, Wigby S, Chapman T. Mating and immunity in invertebrates. Trends Ecol Evol. 2007; 22(1):48-55.
  • [14]Morrow EH, Innocenti P. Female postmating immune responses, immune system evolution and immunogenic males. Biol Rev. 2012; 87(3):631-638.
  • [15]Feldmeyer B, Elsner D, Foitzik S. Gene expression patterns associated with caste and reproductive status in ants: worker‐specific genes are more derived than queen‐specific ones. Mol Ecol. 2014;23(1):151–61.
  • [16]Wurm Y, Wang J, Keller L. Changes in reproductive roles are associated with changes in gene expression in fire ant queens. Mol Ecol. 2010; 19(6):1200-1211.
  • [17]Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, et al. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 2013;14(2):R20.
  • [18]Toth AL, Varala K, Henshaw MT, Rodriguez-Zas SL, Hudson ME, Robinson GE. Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proc R Soc B Biol Sci. 2010; 277(1691):2139-2148.
  • [19]Korb J, Weil T, Hoffmann K, Foster KR, Rehli M. A gene necessary for reproductive suppression in termites. Science. 2009; 324(5928):758-8.
  • [20]Steller MM, Kambhampati S, Caragea D. Comparative analysis of expressed sequence tags from three castes and two life stages of the termite Reticulitermes flavipes. BMC Genomics. 2010; 11(1):463.
  • [21]Grozinger CM, Fan Y, Hoover SER, Winston ML. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees Apis mellifera. Mol Ecol. 2007; 16:4837-4848.
  • [22]Kocher SD, Richard F-J, Tarpy DR, Grozinger CM. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics. 2008; 9(1):232.
  • [23]Oertel E. Mating flights of queen bees. Gleanings in Bee Culture. 1940; 68:292-293.
  • [24]Neumann P, van Praagh JP, Moritz RFA, Dustmann JH. Testing reliability of a potential island mating apiary using DNA microsatellites. Apidologie. 1999; 30(4):257-276.
  • [25]Loper GM, Wolf WW, Taylor OR. Honey bee drone flyways and congregation areas - radar observations. J Kansas Entomol Soc. 1992; 65(3):223-230.
  • [26]Koeniger G, Koeniger N, Fabritius M. Some detailed observations of mating in the honeybee. Bee Wld. 1979; 60:53-57.
  • [27]Tarpy DR, Page RE. No behavioral control over mating frequency in queen honey bees (Apis mellifera L.): Implications for the evolution of extreme polyandry. Am Nat. 2000; 155(6):820-827.
  • [28]Roberts WC. Multiple mating of queen bees proved by progeny and flight tests. Gleanings in Bee Culture. 1944; 72(6):225-259.
  • [29]Woyke J. Causes of repeated mating flights by queen honeybees. J Apic Res. 1964; 3(1):17-23.
  • [30]Koeniger G. In welchem Abschnitt des Paarungsverhaltens der Bienenkönigin findet die Induktion der Eiablage statt? Apidologie. 1981; 12(4):329-343.
  • [31]Kocher S, Tarpy D, Grozinger C. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Mol Biol. 2010; 19(2):153-162.
  • [32]Fahrbach SE, Giray T, Robinson GE. Volume changes in the mushroom bodies of adult honey bee queens. Neurobiol Learn Mem. 1995; 63:181-191.
  • [33]Kocher SD, Richard F-J, Tarpy DR, Grozinger CM. Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees. Behav Ecol. 2009; 20(5):1007-1014.
  • [34]Richard F-J, Tarpy DR, Grozinger CM. Effects of insemination quantity on honey bee queen physiology. PLoS One. 2007; 2: Article ID e980
  • [35]Pflugfelder J, Koeniger N. Fight between virgin queens (Apis mellifera) is initiated by contact with the dorsal abdominal surface. Apidologie. 2003; 34(3):249-256.
  • [36]Vergoz V, Lim J, Duncan M, Cabanes G, Oldroyd BP. Effects of natural mating and CO 2 narcosis on biogenic amine receptor gene expression in the ovaries and brain of queen honey bees, Apis mellifera. Insect Mol Biol. 2012; 21(6):558-567.
  • [37]Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R. Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci. 2005;5.
  • [38]Berger B, Abdalla FC, Cruz-Landim C. Effect of narcosis with CO2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Socbiol. 2005;261–270.
  • [39]Ebadi R, Gary NE, Lorenzen K. Effects of carbon dioxide and low temperature narcosis on honey bees, Apis mellifera. Environmental Entomology. 1980; 9(1):144-148.
  • [40]Harris JW, Woodring J, Harbo JR. Effects of carbon dioxide on levels of biogenic amines in the brains of queenless worker and virgin queen honey bees (Apis mellifera). J Apic Res. 1996; 35(2):69-78.
  • [41]Bierbower SM, Cooper RL. The effects of acute carbon dioxide on behavior and physiology in Procambarus clarkii. J Exp Zool A Ecol Genet Physiol. 2010; 313A(8):484-497.
  • [42]Robertson HM, Kent LB. Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J Insect Sci. 2009;9.
  • [43]Sudarsan R, Thompson C, Kevan PG, Eberl HJ. Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees. J Theor Biol. 2012; 295:168-193.
  • [44]Southwick EE, Moritz RFA. Social control of air ventilation in colonies of honey bees, Apis mellifera. Journal of Insect Physiology. 1987; 33(9):623-626.
  • [45]Seeley TD. Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J Insect Physiol. 1974; 20(11):2301-2305.
  • [46]Kaftanoglu O, Peng YS. Effects of insemination on the initiation of oviposition in the queen honeybee. J Apic Res. 1982; 21(1):3-6.
  • [47]Engels W, Gonçalves L, Engels E. Effects of carbon dioxide on vitellogenin metabolism in unmated queen honeybees. J Apic Res. 1976; 15:3-10.
  • [48]Engels W, Ramamurty P. Initiation of oogenesis in allatectomised virgin honey bee queens by carbon dioxide treatment. J Insect Physiol. 1976; 22(10):1427-1432.
  • [49]Berger B, Abdalla F, Cruz-Landim C. Effect of narcosis with CO 2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Socbiol. 2005; 45(2):261-270.
  • [50]Niño E, Tarpy D, Grozinger C. Genome‐wide analysis of brain transcriptional changes in honey bee (Apis mellifera L.) queens exposed to carbon dioxide and physical manipulation. Insect Mol Biol. 2011; 20(3):387-398.
  • [51]Niño EL, Malka O, Hefetz A, Tarpy DR, Grozinger CM. Chemical profiles of two pheromone glands are differentially regulated by distinct mating factors in honey bee queens (Apis mellifera l.). Plos One. 2013;8(11).
  • [52]Thompson GJ, Yockey H, Lim J, Oldroyd BP. Experimental manipulation of ovary activation and gene expression in honey bee (Apis mellifera) queens and workers: testing hypotheses of reproductive regulation. J Exp Zool A Ecol Genet Physiol. 2007; 307(10):600-610.
  • [53]Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One. 2013; 8(8): Article ID e71462
  • [54]Harbo JR. Propagation and instrumental insemination. In: In: Bee Genetics and Breeding . Rinderer TE, editor. Academic, Orlando; 1986: p.361-389.
  • [55]Wagener-Hulme C, Kuehn J, Schulz D, Robinson G. Biogenic amines and division of labor in honey bee colonies. J Comp Physiol A. 1999; 184(5):471-479.
  • [56]Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;170.
  • [57]Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012; 28(24):3211-3217.
  • [58]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9):1105-1111.
  • [59]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
  • [60]Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-140.
  • [61]Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25.
  • [62]Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1-13.
  • [63]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
  • [64]Brito R, McHale M, Oldroyd B. Expression of genes related to reproduction and pollen foraging in honey bees (Apis mellifera) narcotized with carbon dioxide. Insect Mol Biol. 2010; 19(4):451-461.
  • [65]Winston ML: The biology of the honey bee: Cambridge, MA, USA: Harvard University Press; 1991.
  • [66]Oldroyd BP, Wongsiri S: Asian honey bees: biology, conservation, and human interactions: Cambridge, MA, USA: Harvard University Press; 2009.
  • [67]Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006; 16(11):1404-1413.
  • [68]Gary NE. Chemical mating attractants in the queen honey bee. Science. 1962; 136(3518):773-774.
  • [69]Free JB: Pheromones of social bees: London, UK: Chapman and Hall; 1987.
  • [70]McGraw LA, Gibson G, Clark AG, Wolfner MF. Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Curr Biol. 2004; 14(16):1509-1514.
  • [71]Niño E, Tarpy D, Grozinger C. Differential effects of insemination volume and substance on reproductive changes in honey bee queens (Apis mellifera L.). Insect Mol Biol. 2013; 22(3):233-244.
  • [72]Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA, Toth AL, et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol. 2006;15(5):563–76.
  • [73]Teerawanichpan P, Robertson AJ, Qiu X. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol. 2010; 40(9):641-649.
  • [74]Kambris Z, Brun S, Jang I-H, Nam H-J, Romeo Y, Takahashi K, et al. Drosophila Immunity: A Large-Scale In Vivo RNAi Screen Identifies Five Serine Proteases Required for Toll Activation. Curr Biol. 2006;16(8):808–13.
  • [75]Tang H, Kambris Z, Lemaitre B, Hashimoto C. Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila. J Biol Chem. 2006; 281(38):28097-28104.
  • [76]Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U. A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol. 2007; 31(12):1255-1263.
  • [77]Rehorn K-P, Thelen H, Michelson AM, Reuter R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development. 1996; 122(12):4023-4031.
  • [78]Rolff J, Siva-Jothy MT. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci. 2002; 99(15):9916-9918.
  • [79]Schmid-Hempel P: Parasites in social insects: Princeton, New Jersey, USA: Princeton University Press; 1998.
  • [80]Baer B, Armitage SA, Boomsma JJ. Sperm storage induces an immunity cost in ants. Nature. 2006; 441(7095):872-875.
  • [81]Siva‐Jothy MT, Tsubaki Y, Hooper RE. Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol. 1998; 23(3):274-277.
  • [82]Crailsheim K. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. J Comp Physiol B. 1991; 161(1):55-60.
  • [83]Crailsheim K. Trophallactic interactions in the adult honeybee (Apis mellifera, L). Apidologie. 1998; 29:97-112.
  • [84]Wheeler DE, Buck NA, Evans JD. Expression of insulin/insulin-like signalling and TOR pathway genes in honey bee caste determination. Insect Mol Biol. 2014; 23(1):113-121.
  • [85]Wang Y, Amdam GV, Rueppell O, Wallrichs MA, Fondrk MK, Kaftanoglu O et al.. PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS One. 2009; 4(4):e4899.
  • [86]Vergoz V, Lim J, Oldroyd B. Biogenic amine receptor gene expression in the ovarian tissue of the honey bee Apis mellifera. Insect Mol Biol. 2012; 21(1):21-29.
  • [87]Sasaki K, Nagao T. Distribution and levels of dopamine and its metabolites in brains of reproductive workers in honeybees. J Insect Physiol. 2001; 47(10):1205-1216.
  • [88]K-i H, Sasaki K, Nagao T. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens. Naturwissenschaften. 2005; 92(7):310-313.
  • [89]Harrison JF. Insect acid–base physiology. Annu Rev Entomol. 2001; 46(1):221-250.
  • [90]Wu Q, Brown MR. Signaling and function of insulin-like peptides in insects. Annu Rev Entomol. 2006; 51(1):1-24.
  • [91]Navajas M, Migeon A, Alaux C, Martin-Magniette M-L, Robinson G, Evans J, et al. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics. 2008;9(1):301.
  • [92]Aronstein KA, Saldivar E, Vega R, Westmiller S, Douglas AE. How Varroa parasitism affects the immunological and nutritional status of the honey bee Apis mellifera. Insects. 2012; 3(3):601-615.
  • [93]Alaux C, Dantec C, Parrinello H, Le Conte Y. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and Varroa-parasitized bees. BMC Genomics. 2011; 12(1):496.
  • [94]Oldroyd BP. What's killing American honey bees? PLoS Biol. 2007; 5(6): Article ID e168
  文献评价指标  
  下载次数:58次 浏览次数:32次