期刊论文详细信息
BMC Pulmonary Medicine
Protocadherin-1 is a glucocorticoid-responsive critical regulator of airway epithelial barrier function
Shu Hashimoto2  Minoru Ikeda3  Yasuyuki Nomura3  Hiroyuki Kishi3  Akiko Sekiyama2  Kuroda Kazumichi1  Shuichiro Maruoka2  Yasuhiro Gon2  Yutaka Kozu2 
[1] Nihon University School of Medicine Division of Microbiology, 30-1 Ohyaguchi-Kamicho, Itabashiku 173-8610, Tokyo, Japan;Nihon University School of Medicine Division of Respiratory Disease, 30-1 Ohyaguchi-Kamicho, Itabashiku 173-8610, Tokyo, Japan;Nihon University School of Medicine Division of Otolaryngology, 30-1 Ohyaguchi-Kamicho, Itabashiku 173-8610, Tokyo, Japan
关键词: E-cadherin;    Tight junction;    Bronchial hyperresponsiveness;    Corticosteroids;    Airway barrier function;    Chronic rhinosinusitis;    Bronchial asthma;    PCDH1;   
Others  :  1222567
DOI  :  10.1186/s12890-015-0078-z
 received in 2015-01-17, accepted in 2015-07-20,  发布年份 2015
PDF
【 摘 要 】

Background

Impaired epithelial barrier function renders the airway vulnerable to environmental triggers associated with the pathogenesis of bronchial asthma. We investigated the influence of protocadherin-1 (PCDH1), a susceptibility gene for bronchial hyperresponsiveness, on airway epithelial barrier function.

Methods

We applied transepithelial electric resistance and dextran permeability testing to evaluate the barrier function of cultured airway epithelial cells. We studied PCDH1 function by siRNA-mediated knockdown and analyzed nasal or bronchial tissues from 16 patients with chronic rhinosinusitis (CRS) and nine patients with bronchial asthma for PCDH1 expression.

Results

PCDH1 was upregulated with the development of epithelial barrier function in cultured airway epithelial cells. Immunocytochemical analysis revealed that PCDH localized to cell-cell contact sites and colocalized with E-cadherin at the apical site of airway epithelial cells. PCDH1 gene knockdown disrupted both tight and adhesion junctions. Immunohistochemical analysis revealed strong PCDH1 expression in nasal and bronchial epithelial cells; however, expression decreased in inflamed tissues sampled from patients with CRS or bronchial asthma. Dexamethasone (Dex) increased the barrier function of airway epithelial cells and increased PCDH1 expression. PCDH1 gene knockdown eradicated the effect of Dex on barrier function.

Conclusion

These results suggest that PCDH1 is important for airway function as a physical barrier, and its dysfunction is involved in the pathogenesis of allergic airway inflammation. We also suggest that glucocorticoids promotes epithelial barrier integrity by inducing PCDH1.

【 授权许可】

   
2015 Kozu et al.

【 预 览 】
附件列表
Files Size Format View
20150823041831311.pdf 1958KB PDF download
Fig. 8. 93KB Image download
Fig. 7. 33KB Image download
Fig. 6. 43KB Image download
Fig. 5. 183KB Image download
Fig. 4. 25KB Image download
Fig. 3. 43KB Image download
Fig. 2. 42KB Image download
Fig. 1. 57KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O’Byrne P, Pedersen SE, Pizzichini E, Sullivan SD, Wenzel SE, Zar HJ. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008; 31:143-78.
  • [2]Holgate ST. Novel targets of therapy in asthma. Curr Opin Pulm Med. 2009; 15:63-71.
  • [3]Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007; 127:2525-32.
  • [4]Cockcroft DW. Nonallergic airway responsiveness. J Allergy Clin Immunol. 1988; 81:111-9.
  • [5]Takishima T, Hida W, Suzuki S, Sasaki T. Direct graphical recordings of the cumulative dose–response curves of the airway to methacholine in normal, bronchitic and asthmatic subjects. Tohoku J Exp Med. 1981; 135:117-37.
  • [6]Koppelman GH, Meyers DA, Howard TD, Zheng SL, Hawkins GA, Ampleford EJ, Xu J, Koning H, Bruinenberg M, Nolte IM, van Diemen CC, Boezen HM, Timens W, Whittaker PA, Stine OC, Barton SJ, Holloway JW, Holgate ST, Graves PE, Martinez FD, van Oosterhout AJ, Bleecker ER, Postma DS. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2009; 180:929-35.
  • [7]Koning H, Postma DS, Brunekreef B, Duiverman EJ, Smit HA, Thijs C, Penders J, Kerkhof M, Koppelman GH. Protocadherin-1 polymorphisms are associated with eczema in two Dutch birth cohorts. Pediatr Allergy Immunol. 2012; 23:270-7.
  • [8]Sano K, Tanihara H, Heimark RL, Obata S, Davidson M, St John T, Taketani S, Suzuki S. Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J. 1993; 12:2249-56.
  • [9]Koning H, Sayers I, Stewart CE, de Jong D, Ten Hacken NH, Postma DS, van Oosterhout AJ, Nawijn MC, Koppelman GH. Characterization of protocadherin-1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB J. 2012; 26:439-48.
  • [10]Haws C, Krouse ME, Xia Y, Gruenert DC, Wine JJ. CFTR channels in immortalized human airway cells. Am J Physiol. 1992; 263:L692-707.
  • [11]Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994; 10:38-47.
  • [12]Cozens AL, Yezzi MJ, Chin L, Simon EM, Friend DS, Gruenert DC. Chloride ion transport in transformed normal and cystic fibrosis epithelial cells. Adv Exp Med Biol. 1991; 290:187-94.
  • [13]Wine JJ, Finkbeiner WE, Haws C, Krouse ME, Moon S, Widdicombe JH, Xia Y. CFTR and other Cl- channels in human airway cells. Jpn J Physiol. 1994; 44 Suppl 2:S199-205.
  • [14]Meltzer EO, Hamilos DL. Rhinosinusitis diagnosis and management for the clinician: a synopsis of recent consensus guidelines. Mayo Clin Proc. 2011; 86:427-43.
  • [15]Sekiyama A, Gon Y, Terakado M, Takeshita I, Kozu Y, Maruoka S, Matsumoto K, Hashimoto S. Glucocorticoids enhance airway epithelial barrier integrity. Int Immunopharmacol. 2012; 12:350-7.
  • [16]Terakado M, Gon Y, Sekiyama A, Takeshita I, Kozu Y, Matsumoto K, Takahashi N, Hashimoto S. The Rac1/JNK pathway is critical for EGFR-dependent barrier formation in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2011; 300:L56-63.
  • [17]Weiser N, Molenda N, Urbanova K, Bahler M, Pieper U, Oberleithner H, Schillers H. Paracellular permeability of bronchial epithelium is controlled by CFTR. Cell Physiol Biochem. 2011; 28:289-96.
  • [18]Carayol N, Vachier I, Chanez P, Vignola AM, Chiappara G. Corticosteroid-induced epithelial shedding in asthma. Am J Respir Crit Care Med. 2002; 166:1290-1.
  • [19]Kellogg DR, Oegema K, Raff J, Schneider K, Alberts BM. CP60: a microtubule-associated protein that is localized to the centrosome in a cell cycle-specific manner. Mol Biol Cell. 1995; 6:1673-84.
  • [20]Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978; 39:219-32.
  • [21]Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J. 1995; 9:910-8.
  • [22]Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D, Bedke N, Cremin C, Sones J, Djukanović R, Howarth PH, Collins JE, Holgate ST, Monk P, Davies DE. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011; 128:549-56.
  • [23]Schweitzer KS, Hatoum H, Brown MB, Gupta M, Justice MJ, Beteck B, Van Demark M, Gu Y, Presson RG, Hubbard WC, Petrache I. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides. Am J Physiol Lung Cell Mol Physiol. 2011; 301:L836-46.
  • [24]Georas SN, Rezaee F. Epithelial barrier function: at the front of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014; 134:509-20.
  文献评价指标  
  下载次数:29次 浏览次数:15次