期刊论文详细信息
BMC Research Notes
PolyCTLDesigner: a computational tool for constructing polyepitope T-cell antigens
Sergei I Bazhan1  Denis V Antonets1 
[1] State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk Region, Russian Federation
关键词: Travelling salesman problem;    Directed weighted graph;    Proteasome;    Transporters associated with antigen processing;    Cytotoxic T cell;    Polyepitope;    T-cell epitope;   
Others  :  1141430
DOI  :  10.1186/1756-0500-6-407
 received in 2013-02-14, accepted in 2013-09-24,  发布年份 2013
PDF
【 摘 要 】

Background

Construction of artificial polyepitope antigens is one of the most promising strategies for developing more efficient and safer vaccines evoking T-cell immune responses. Epitope rearrangements and utilization of certain spacer sequences have been proven to greatly influence the immunogenicity of polyepitope constructs. However, despite numerous efforts towards constructing and evaluating artificial polyepitope immunogens as well as despite numerous computational methods elaborated to date for predicting T-cell epitopes, peptides binding to TAP and for antigen processing prediction, only a few computational tools were currently developed for rational design of polyepitope antigens.

Findings

Here we present a PolyCTLDesigner program that is intended for constructing polyepitope immunogens. Given a set of either known or predicted T-cell epitopes the program selects N-terminal flanking sequences for each epitope to optimize its binding to TAP (if necessary) and joins resulting oligopeptides into a polyepitope in a way providing efficient liberation of potential epitopes by proteasomal and/or immunoproteasomal processing. And it also tries to minimize the number of non-target junctional epitopes resulting from artificial juxtaposition of target epitopes within the polyepitope. For constructing polyepitopes, PolyCTLDesigner utilizes known amino acid patterns of TAP-binding and proteasomal/immunoproteasomal cleavage specificity together with genetic algorithm and graph theory approaches. The program was implemented using Python programming language and it can be used either interactively or through scripting, which allows users familiar with Python to create custom pipelines.

Conclusions

The developed software realizes a rational approach to designing poly-CTL-epitope antigens and can be used to develop new candidate polyepitope vaccines. The current version of PolyCTLDesigner is integrated with our TEpredict program for predicting T-cell epitopes, and thus it can be used not only for constructing the polyepitope antigens based on preselected sets of T-cell epitopes, but also for predicting cytotoxic and helper T-cell epitopes within selected protein antigens. PolyCTLDesigner is freely available from the project’s web site: http://tepredict.sourceforge.net/PolyCTLDesigner.html webcite.

【 授权许可】

   
2013 Antonets and Bazhan; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327045042761.pdf 332KB PDF download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Berzofsky JA, Berkower IJ: Novel approaches to peptide and engineered protein vaccines for HIV using defined epitopes: advances in 1994–1995. AIDS 1995, 9(A):S143-S157.
  • [2]Woodberry T, Gardner J, Mateo L, Eisen D, Medveczky J, Ramshaw IA, Thomson SA, Ffrench RA, Elliott SL, Firat H, Lemonnier FA, Suhrbier A: Immunogenicity of a human immunodeficiency virus (HIV) polytope vaccine containing multiple HLA A2 HIV CD8(+) cytotoxic T-cell epitopes. J Virol 1999, 73:5320-5325.
  • [3]Bazhan SI, Belavin PA, Seregin SV, Danilyuk NK, Babkina IN, Karpenko LI, Nekrasova NA, Lebedev LR, Ignatyev GM, Agafonov AP, Poryvaeva VA, Aborneva IV, Ilyichev AA: Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens. Vaccine 2004, 22:1672-1682.
  • [4]Cardinaud S, Bouziat R, Rohrlich P-S, Tourdot S, Weiss L, Langlade-Demoyen P, Burgevin A, Fiorentino S, Van Endert P, Lemonnier FA: Design of a HIV-1-derived HLA-B07.02-restricted polyepitope construct. AIDS 2009, 23:1945-1954.
  • [5]Iglesias MC, Mollier K, Beignon A-S, Souque P, Adotevi O, Lemonnier F, Charneau P: Lentiviral vectors encoding HIV-1 polyepitopes induce broad CTL responses in vivo. Molec Ther 2007, 15:1203-1210.
  • [6]Tine JA, Firat H, Payne A, Russo G, Davis SW, Tartaglia J, Lemonnier FA, Demoyen PL, Moingeon P: Enhanced multiepitope-based vaccines elicit CD8+ cytotoxic T cells against both immunodominant and cryptic epitopes. Vaccine 2005, 23:1085-1091.
  • [7]Bazhan SI, Karpenko LI, Ilyicheva TN, Belavin PA, Seregin SV, Danilyuk NK, Antonets DV, Ilyichev AA: Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses. Molec Immunol 2010, 47:1507-1515.
  • [8]Ishioka GY, Fikes J, Hermanson G, Livingston B, Crimi C, Qin M, Del Guercio MF, Oseroff C, Dahlberg C, Alexander J, Chesnut RW, Sette A: Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J Immunol 1999, 162:3915-3925.
  • [9]Livingston BD, Newman M, Crimi C, McKinney D, Chesnut R, Sette A: Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 2001, 19:4652-4660.
  • [10]Bonehill A, Heirman C, Tuyaerts S, Michiels A, Breckpot K, Brasseur F, Zhang Y, Van Der Bruggen P, Thielemans K: Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 2004, 172:6649-6657.
  • [11]Bonini C, Lee SP, Riddell SR, Greenberg PD: Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol 2001, 166:5250-5257.
  • [12]Su Z, Vieweg J, Weizer AZ, Dahm P, Yancey D, Turaga V, Higgins J, Boczkowski D, Gilboa E, Dannull J: Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 2002, 62:5041-5048.
  • [13]Kim TW, Hung C-F, Boyd D, Juang J, He L, Kim JW, Hardwick JM, Wu T-C: Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol 2003, 171:2970-2976.
  • [14]Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, Gilboa E: Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clini Cancer Res 2005, 11:5566-5571.
  • [15]Mateo L, Gardner J, Chen Q, Schmidt C, Down M, Elliott SL, Pye SJ, Firat H, Lemonnier FA, Cebon J, Suhrbier A: An HLA-A2 polyepitope vaccine for melanoma immunotherapy. Journal of immunology 1999, 163:4058-4063.
  • [16]Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM: Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res 2001, 7:4253-4261.
  • [17]Singh H, Raghava GPS: ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003, 19:1009-1014.
  • [18]Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M: NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nuc Acids Res 2008, 36:W509-W512.
  • [19]Zhang GL, Ansari HR, Bradley P, Cawley GC, Hertz T, Hu X, Jojic N, Kim Y, Kohlbacher O, Lund O, Lundegaard C, Magaret CA, Nielsen M, Papadopoulos H, Raghava GPS, Tal V-S, Xue LC, Yanover C, Zhu S, Rock MT, Crowe JE, Panayiotou C, Polycarpou MM, Duch W, Brusic V: Machine learning competition in immunology - prediction of HLA class I binding peptides. J Immunol Methods 2011, 374:1-4.
  • [20]Bhasin M, Raghava GPS: A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 2007, 32:31-42.
  • [21]Kuttler C, Nussbaum AK, Dick TP, Rammensee H, Hadeler K: An algorithm for the prediction of proteasomal cleavages. J Mol Biol 2000, 301:229.
  • [22]Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M, Laplace C, Zwinderman A, Dick TP, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanovic S, Rammensee HG, Schild H: Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001, 194:1-12.
  • [23]Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H: PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 2001, 53:87-94.
  • [24]Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005, 35:2295-2303.
  • [25]Nielsen M, Lundegaard C, Lund O, Keşmir C: The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005, 57:33-41.
  • [26]Peters B, Bulik S, Tampe R, Van Endert PM, Holzhütter H-G: Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 2003, 171:1741-1749.
  • [27]Doytchinova I, Hemsley S, Flower DR: Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation. J Immunol 2004, 173:6813-6819.
  • [28]Ren Y, Wu B, Pan Y, Lv F, Kong X, Luo X, Li Y, Yang Q: Characterization of the binding profile of peptide to transporter associated with antigen processing (TAP) using Gaussian process regression. Computers Biol Med 2011, 41:865-870.
  • [29]He Y, Rappuoli R, De Groot AS, Chen RT: Emerging vaccine informatics. J Biomed Biotechnol 2010, 2010:218590.
  • [30]Lee Y, Ferrari G, Lee SC: Estimating design space available for polyepitopes through consideration of major histocompatibility complex binding motifs. Biomed Microdevices 2010, 12:207-222.
  • [31]Altuvia Y, Margalit H: Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. J Mol Biol 2000, 295:879-890.
  • [32]Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N: ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002, 419:480-483.
  • [33]Neefjes J, Jongsma MLM, Paul P, Bakke O: Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011, 11:823-836.
  • [34]Mo XY, Cascio P, Lemerise K, Goldberg AL, Rock K: Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J Immunol 1999, 163:5851-5859.
  • [35]Craiu A, Akopian T, Goldberg A, Rock KL: Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci U S A 1997, 94:10850-10855.
  • [36]Meyer D, Singe RM, Mack SJ, Lancaster A, Nelson MP, Erlich H, Fernandez-Vina M, Thomson G: Single Locus Polymorphism of Classical HLA Genes. In Immunobiology of the Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Conference, Volume I. Edited by Hansen JA. Seattle, WA: IHWG Press; 2007:653-704.
  • [37]Antonets DV, Maksyutov AZ: TEpredict: Software for T-Cell epitope prediction. Mol Biol 2010, 44:119-127.
  • [38]Pyevolve: Genetic Algorithm framework written in pure python. http://pyevolve.sourceforge.net webcite
  • [39]Singh H, Raghava GP: ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001, 17:1236-1237.
  • [40]Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature Biotechnol 1999, 17:555-561.
  • [41]Rudolph MG, Stanfield RL, Wilson IA: How TCRs bind MHCs, peptides, and coreceptors. Ann Rev Immunol 2006, 24:419-466.
  • [42]Schneider SC, Ohmen J, Fosdick L, Gladstone B, Guo J, Ametani A, Sercarz EE, Deng H: Cutting edge: introduction of an endopeptidase cleavage motif into a determinant flanking region of hen egg lysozyme results in enhanced T cell determinant display. J Immunol 2000, 165:20-23.
  • [43]Zhu H, Liu K, Cerny J, Imoto T, Moudgil KD: Insertion of the dibasic motif in the flanking region of a cryptic self-determinant leads to activation of the epitope-specific T cells. J Immunol 2005, 175:2252-2260.
  • [44]python-graph - a library for working with graphs in Python. http://code.google.com/p/python-graph/ webcite
  • [45]Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, De Hoon MJL: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25:1422-1423.
  文献评价指标  
  下载次数:30次 浏览次数:22次