期刊论文详细信息
BMC Systems Biology
Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
Larry P Walker2  Pedro Mendes4  Brandon Barker1  Kieran Smallbone3  Benjamin D Heavner2 
[1] Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA;Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA;Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, M1 7DN, UK;School of Computer Science, University of Manchester, Manchester, M13 9PL, UK
关键词: Model;    GENRE;    GEM;    Flux balance analysis;    Yeast;    Reconstruction;    Metabolic;   
Others  :  1144347
DOI  :  10.1186/1752-0509-6-55
 received in 2012-03-02, accepted in 2012-06-04,  发布年份 2012
PDF
【 摘 要 】

Background

Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature.

Results

Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3.

thumbnailAdditional file 1. Function testYeastModel.m.m.

Format: MSize: 75KB Download fileOpen Data

【 授权许可】

   
2012 Heavner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330120429282.pdf 360KB PDF download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Förster J, Famili I, Fu P, Palsson B, Nielsen J: Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Res 2003, 13:244-253.
  • [2]Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2:886-897.
  • [3]Feist AM, Herrgaard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2008, 7:129-143.
  • [4]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-D360.
  • [5]Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005, 33:6083-6089.
  • [6]Osterlund T, Nookaew I, Nielsen J: Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv 2011.
  • [7]Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel-Tarver L, Schwartz K, Sethuraman A, Botstein D, Michael Cherry J: The Saccharomyces Genome Database Project: Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 2006, 23:857-865.
  • [8]Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Büthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasié I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kürdar B, Penttilä M, Klipp E, Palsson BØ, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008, 26:1155-1160.
  • [9]Duarte NC, Herrgård MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004, 14:1298.
  • [10]Kuepfer L, Sauer U, Blank LM: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 2005, 15:1421-1430.
  • [11]Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S: The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2008, 2:71. BioMed Central Full Text
  • [12]Mo ML, Palsson BØ, Herrgård MJ: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009, 3:37. BioMed Central Full Text
  • [13]Thiele I, Palsson BØ: Reconstruction annotation jamborees: a community approach to systems biology. Mol Syst Biol 2010, 6:361.
  • [14]Kitano H, Ghosh S, Matsuoka Y: Social engineering for virtual “big science” in systems biology. Nat Chem Biol 2011, 7:323-326.
  • [15]Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK, Bazzani S, Charusanti P, Chen F-C, Fleming RM, Hsiung CA, De Keersmaecker SC, Liao Y-C, Marchal K, Mo ML, Özdemir E, Raghunathan A, Reed JL, Shin S-I, Sigurbjörnsdóttir S, Steinmann J, Sudarsan S, Swainston N, Thijs IM, Zengler K, Palsson BO, Adkins JN, Bumann D: A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol 2011, 5:8. BioMed Central Full Text
  • [16]Dobson PD, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, Swainston N, Dunn WB, Fisher P, Hull D, Brown M, Oshota O, Stanford NJ, Kell DB, King RD, Oliver SG, Stevens RD, Mendes P: Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 2010, 4:145. BioMed Central Full Text
  • [17]Edwards JS, Covert M, Palsson BO: Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 2002, 4:133-140.
  • [18]Le Novère N, Courtot M, Laibe C: Adding semantics in kinetics models of biochemical pathways. Proceedings of the 2nd International ESCEC Symposium on Experimental Standard Conditions on Enzyme Characterizations 2007.
  • [19]Cvijovic M, Bordel S, Nielsen J: Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb Biotechnol 2011, 4:572-584.
  • [20]Heavner BD, Henry SA, Walker LP: Evaluating Sphingolipid Biochemistry in the Consensus Reconstruction of Yeast Metabolism. Ind Biotechnol 2012, 8:72-78.
  • [21]Kavun Ozbayraktar FB, Ulgen KO: Stoichiometric network reconstruction and analysis of yeast sphingolipid metabolism incorporating different states of hydroxylation. Biosystems 2011, 104:63-75.
  • [22]Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcantara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 2007, 36:D344-D350.
  • [23]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524-531.
  • [24]Hübner K, Sahle S, Kummer U: Applications and trends in systems biology in biochemistry. FEBS J 2011, 278:2767-2857.
  • [25]Keating SM, Bornstein BJ, Finney A, Hucka M: SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics 2006, 22:1275.
  • [26]Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6:1290-1307.
  • [27]Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A: Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. PNAS 2009, 106:2136.
  • [28]Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM: Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 2010, 38:D433-D436.
  • [29]Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pál C, Papp B: An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 2011, 43:656-662.
  • [30]Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’ Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285:901-906.
  • [31]Blank LM, Kuepfer L, Sauer U: Large-scale 13 C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 2005, 6:R49. BioMed Central Full Text
  • [32]Segrè D, DeLuna A, Church GM, Kishony R: Modular epistasis in yeast metabolism. Nat Genet 2004, 37:77-83.
  • [33]Deutscher D, Meilijson I, Kupiec M, Ruppin E: Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 2006, 38:993-998.
  • [34]Harrison R, Papp B, Pal C, Oliver SG, Delneri D: Plasticity of genetic interactions in metabolic networks of yeast. PNAS 2007, 104:2307-2312.
  • [35]He X, Qian W, Wang Z, Li Y, Zhang J: Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 2010, 42:272-276.
  • [36]Snitkin ES, Segrè D: Epistatic Interaction Maps Relative to Multiple Metabolic Phenotypes. PLoS Genetics 2011, 7:e1001294.
  • [37]Rolfsson O, Palsson BØ, Thiele I: The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst Biol 2011, 5:155. BioMed Central Full Text
  • [38]Snitkin E, Dudley A, Janse D, Wong K, Church G, Segrè D: Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol 2008, 9:R140. BioMed Central Full Text
  • [39]Villa-García MJ, Choi MS, Hinz FI, Gaspar ML, Jesch SA, Henry SA: Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 2011, 285:125-149.
  • [40]Thiele I, Palsson BO: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.
  • [41]Xu L, Barker B, Gu Z: Dynamic Epistasis for Different Alleles of the Same Gene. PNAS 2010. In Press
  • [42]Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:R54.51-R54.12.
  • [43]Aho T, Almusa H, Matilainen J, Larjo A, Ruusuvuori P, Aho K-L, Wilhelm T, Lähdesmäki H, Beyer A, Harju M, Chowdhury S, Leinonen K, Roos C, Yli-Harja O: Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network. PLoS One 2010, 5:e10662.
  • [44]Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grünberg H-H: Quantitative modeling of triacylglycerol homeostasis in yeast - metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS J 2008, 275:5552-5563.
  • [45]Beard DA, Liang S, Qian H: Energy balance for analysis of complex metabolic networks. Biophys J 2002, 83:79-86.
  • [46]Smallbone K, Simeonidis E: Flux balance analysis: A geometric perspective. J Theor Biol 2009, 258:311-315.
  • [47]Kümmel A, Panke S, Heinemann M: Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinforma 2006, 7:512. BioMed Central Full Text
  • [48]Bloch KE: Sterol structure and membrane function. Crit Rev Biochem 1983, 14:47-92.
  • [49]Thomas KC, Hynes SH, Ingledew WM: Initiation of anaerobic growth of Saccharomyces cerevisiae by amino acids or nucleic acid bases: ergosterol and unsaturated fatty acids cannot replace oxygen in minimal media. J Ind Microbiol Biotechnol 1998, 21:247-253.
  • [50]Ratledge C, Evans CT: Lipids and their Metabolism. In The Yeasts. 2nd edition. Edited by Rose AH, Harrison JS. CA: Academic Press, San Diego; 1989:3.
  文献评价指标  
  下载次数:4次 浏览次数:2次