BMC Medical Genetics
De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing
Fabiola Quintero-Rivera2  Wayne W Grody4  Stanley F Nelson5  Eric Vilain4  Joshua L Deignan2  Nicole Mans3  Patricia F O’Lague1  John Mann1  Naghmeh Dorrani3  Hane Lee2  Reymundo Lozano3  Samuel P Strom2 
[1]Department of Genetics, Kaiser Permanente, Fresno, CA, USA
[2]Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
[3]Department of Pediatrics, University of California Davis, Sacramento, CA, USA
[4]Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
[5]Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
关键词: Developmental delay;    Intellectual disability;    KMT2A;    Clinical exome sequencing;    Wiedemann-Steiner syndrome;   
Others  :  1091969
DOI  :  10.1186/1471-2350-15-49
 received in 2013-12-16, accepted in 2014-04-10, published in 15
【 摘 要 】


Wiedemann-Steiner Syndrome (WSS) is characterized by short stature, a variety of dysmorphic facial and skeletal features, characteristic hypertrichosis cubiti (excessive hair on the elbows), mild-to-moderate developmental delay and intellectual disability. [MIM#: 605130]. Here we report two unrelated children for whom clinical exome sequencing of parent-proband trios was performed at UCLA, resulting in a molecular diagnosis of WSS and atypical clinical presentation.

Case presentation

For patient 1, clinical features at 9 years of age included developmental delay, craniofacial abnormalities, and multiple minor anomalies. Patient 2 presented at 1 year of age with developmental delay, microphthalmia, partial 3–4 left hand syndactyly, and craniofacial abnormalities. A de novo missense c.4342T>C variant and a de novo splice site c.4086+G>A variant were identified in the KMT2A gene in patients 1 and 2, respectively.


Based on the clinical and molecular findings, both patients appear to have novel presentations of WSS. As the hallmark hypertrichosis cubiti was not initially appreciated in either case, this syndrome was not suspected during the clinical evaluation. This report expands the phenotypic spectrum of the clinical phenotypes and KMT2A variants associated with WSS.

【 授权许可】

2014 Strom et al.; licensee BioMed Central Ltd.

【 预 览 】
Files Size Format View
20150128175531390.pdf 720KB PDF download
Figure 2. 76KB Image download
Figure 1. 154KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J: Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010, 42(9):790-793.
  • [2]Miyake N, Mizuno S, Okamoto N, Ohashi H, Shiina M, Ogata K, Tsurusaki Y, Nakashima M, Saitsu H, Niikawa N, Matsumoto N: KDM6A point mutations cause Kabuki syndrome. Hum Mutat 2013, 34(1):108-110.
  • [3]Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, McGaughran J, Rauch A, Zenker M, Adam MP, Innes M, Davies C, López AG, Casalone R, Weber A, Brueton LA, Navarro AD, Bralo MP, Venselaar H, Stegmann SP, Yntema HG, van Bokhoven H, Brunner HG: Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 2009, 46(9):598-606.
  • [4]Campeau PM, Lu JT, Dawson BC, Fokkema IF, Robertson SP, Gibbs RA, Lee BH: The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms. Hum Mutat 2012, 33(11):1520-1525.
  • [5]Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R, Mungall AJ, Eydoux P, Babul-Hirji R, An J, Marra MA, Chitayat D, Boycott KM, Weaver DD, Jones SJ, FORGE Canada Consortium: Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet 2012, 90(1):110-118.
  • [6]Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, et al.: HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012, 489(7415):313-317.
  • [7]Harakalova M, van den Boogaard MJ, Sinke R, van Lieshout S, van Tuil MC, Duran K, Renkens I, Terhal PA, de Kovel C, Nijman IJ, van Haelst M, Knoers NV, van Haaften G, Kloosterman W, Hennekam RC, Cuppen E, van Amstel HK P: X-exome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability, truncal obesity, gynaecomastia, hypogonadism and unusual face. J Med Genet 2012, 49(8):539-543.
  • [8]Kaiser FJ, Ansari M, Braunholz D, Concepcion Gil-Rodriguez M, Decroos C, Wilde JJ, Fincher CT, Kaur M, Bando M, Amor DJ, Atwal PS, Bahlo M, Bowman CM, Bradley JJ, Brunner HG, Clark D, Del Campo M, Di Donato N, Diakumis P, Dubbs H, Dyment DA, Eckhold J, Ernst S, Ferreira JC, Francey LJ, Gehlken U, Guillén-Navarro E, Gyftodimou Y, Hall BD, Hennekam R, et al.: Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum Mol Genet 2014. [Epub ahead of print]
  • [9]Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV, Holder-Espinasse M, Irving M, Saggar AK, Smithson S, Trembath RC, Deshpande C, Simpson MA: De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am J Hum Genet 2012, 91(2):358-364.
  • [10]Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ: Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995, 376(6538):348-351.
  • [11]Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T, Ohashi H, Naritomi K, Tsukahara M, Makita Y, Sugimoto T, Sonoda T, Hasegawa T, Chinen Y, Tomita Ha HA, Kinoshita A, Mizuguchi T, Yoshiura Ki K, Ohta T, Kishino T, Fukushima Y, Niikawa N, Matsumoto N: Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 2002, 30(4):365-366.
  • [12]Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, et al.: Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010, 86(5):749-764.
  • [13]Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM: Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 2013, 369(16):1502-1511.
  • [14]Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Sweeney E, Mansour S, Mohammed S, Donnai D, Black G: Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 2011, 89(5):675-681.
  • [15]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128(4):693-705.
  • [16]Tkachuk DC, Kohler S, Cleary ML: Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992, 71(4):691-700.
  • [17]Marschalek R: Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 2011, 152(2):141-154.
  • [18]Butler LH, Slany R, Cui X, Cleary ML, Mason DY: The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Blood 1997, 89(9):3361-3370.
  • [19]Ayton P, Sneddon SF, Palmer DB, Rosewell IR, Owen MJ, Young B, Presley R, Subramanian V: Truncation of the Mll gene in exon 5 by gene targeting leads to early preimplantation lethality of homozygous embryos. Genesis 2001, 30(4):201-212.
  • [20]Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ: Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995, 378(6556):505-508.
  • [21]Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL: MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002, 10(5):1107-1117.
  • [22]MacDermot KD, Patton MA, Williams MJ, Winter RM: Hypertrichosis cubiti (hairy elbows) and short stature: a recognisable association. J Med Genet 1989, 26(6):382-385.
  • [23]Flannery DB, Fink SM, Francis G, Gilman PA: Hypertrichosis cubiti. Am J Med Genet 1989, 32(4):482-483.
  • [24]Edwards MJ, Crawford AE, Jammu V, Wise G: Hypertrichosis “cubiti” with facial asymmetry. Am J Med Genet 1994, 53(1):56-58.
  • [25]Visser R, Beemer FA, Veenhoven RH, De Nef JJ: Hypertrichosis cubiti: two new cases and a review of the literature. Genet Couns 2002, 13(4):397-403.
  • [26]NHLBI Exome Sequencing Project (ESP): Exome Variant Server. [http://evs.gs.washington.edu/EVS/ webcite]
  • [27]Yourshaw M, Taylor SP, Rao AR, Martín MG, Nelson SF: Rich annotation of DNA sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins. 2014. [Epub ahead of print]
  • [28]Strom SP, Lee H, Das K, Vilain E, Nelson SF, Grody WW, Deignan JL: Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory. Genet Med 2014. [Epub ahead of print]
  • [29]Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192.
  • [30]Koenig R, Meinecke P, Kuechler A, Schafer D, Muller D: Wiedemann-Steiner syndrome: three further cases. Am J Med Genet A 2010, 152A(9):2372-2375.
  • [31]Aasland R, Gibson TJ, Stewart AF: The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 1995, 20(2):56-59.
  • [32]Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009, 37(9):e67.
  • [33]Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, et al.: Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, 485(7397):242-245.
  • [34]Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, Röpke A, Moog U, Riess A, Thiel CT, Tzschach A, Wiesener A, Wohlleber E, Zweier C, Ekici AB, Zink AM, Rump A, Meisinger C, Grallert H, Sticht H, et al.: Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012, 380(9854):1674-1682.
  • [35]Willemsen MH, Vissers LE, Willemsen MA, van Bon BW, Kroes T, de Ligt J, de Vries BB, Schoots J, Lugtenberg D, Hamel BC, van Bokhoven H, Brunner HG, Veltman JA, Kleefstra T: Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet 2012, 49(3):179-183.
  • [36]Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, Chen H, Kronengold J, Abhyankar A, Cilio R, Nitschke P, Kaminska A, Boddaert N, Casanova JL, Desguerre I, Munnich A, Dulac O, Kaczmarek LK, Colleaux L, Nabbout R: De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012, 44(11):1255-1259.
  • [37]Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, Meisler MH, Goldstein DB: Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 2012, 49(6):353-361.
  • [38]Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF: Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet 2014. [Epub ahead of print]
  • [39]Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, McDonald M, Jiang YH, Xie P, Need A, Goldstein DB: The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014, 16(2):176-182.
  • [40]Jamal SM, Yu JH, Chong JX, Dent KM, Conta JH, Tabor HK, Bamshad MJ: Practices and policies of clinical exome sequencing providers: analysis and implications. Am J Med Genet A 2013, 161A(5):935-950.
  下载次数:0次 浏览次数:2次